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BY 

S. A. AMITSUR 

ABSTRACT 

Bounds and asymptotic formulas are given for the size of the irreducible 
representations of the symmetric groups. These are applied to obtain informa- 
tion on the identities and codimension sequence c. (R) of a Pl-algebra R of 
characteristic zero, e.g., the "ultimate" width of the hook in which the diagrams 
of the cocharacters of R lies is _-__(limc.(R)~") -', and limc.(R)'/"<_- 
2(lim c. (R)~'")2 for rings with no right (or left) total annihilators. 

1. Introduction 

The relation between the representations of the symmetric group and the 

polynomial identities I(R) of an algebra R of characteristic zero, has been 

developed by Regev in a sequence of papers. The basic idea is to consider the set 

of multilinear homogeneous polynomials V, in n non-commutat ive indeter- 

minates x~,. . . ,x,  as an S,-module,  isomorphic with FS,, by setting 

o'f[x~,.. ",x,] = f[x.o~,'" .,x,,~,)], the polynomials of V, which are identities of 

R, i.e. L ( R )  = I (R)N V. is a left S.-module,  and by identifying V. with the 

group ring FS., I~ (R) is a left ideal in IS..  The n-th cocharacter x. (R)  is the 

character of the quotient module V./I~ (R), and its dimension c. (R)  is the n-th 

codimension of R. V . / L  (R)  is a direct sum of irreducible left ideals ID, and 

c. ( R ) =  E aD dim D. In particular, if for some Young diagram D ' ,  dim D ' >  

c. (R),  then the two-sided ideal Io, is included in/~ (R). Regev in [4] has shown 

that the classical result, that R satisfies a power of standard polynomial 

Sh[x ,"  ",Xh] k = 0, can be shown with h = ( d -  1)2+ 1, and k - h  4 where d is 

the degree of a minimal identity of R. In [1], Regev and the author have shown 

that the diagrams D of the cocharacter lie in a hook of width - e ( d -  1) 4. 

The present paper  uses the methods developed by Regev and in [1], to obtain 

more refined results in this direction. 
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First we obtain better bounds for dim(k ~) of a Young diagram of rectangles 

k x h, and of hooks shown in Fig. 2. These bounds are used to show, e.g., that 

S ~ [ x ] = 0  will hold for k -  h21ogh which is better than the bound of [4]. 

Next we consider ! i m c , ( R )  ~/~= c, and prove that c can replace Latyshef 

bound ( d -  1) 2 which was used in [1] and [4], but then without giving precise 

bounds, but rather results of the form, e.g.: (1) for each h > c there exists k such 

that R satisfies Sh [x] k = 0; (2) the diagrams D of the cocharacter lie in a hook of 

the shape in Fig. 3 (Corollary 9) with 'ultimate' w i d t h -  < c 2. An interesting 

corollary is that l i m c , ( R )  ~/" and lira c,(R) ~/" are not independent. For matrix 

rings and for the exterior algebra actually lira c, (R)~/~ exists (Regev [5], Drensky 

[3]). In the general case we could only prove that lira c, (R)'/" -< 2(lim c, (R)'")2.  

A lower bound for c is s 2, where s is a size of matrices in which R/N~(R) can be 

embedded,  where N~(R) is the sum of all nilpotent ideals of R. 

2. Dimensions of the representations of S. 

All algebras and representations in this paper are over fields of characteristic 

zero. Let D be a Young diagram of content n ; dim D will denote the dimension 

of the corresponding representation of the symmetric group S.. 

To compute a lower bound for dim D we use the hook formula 

n! 
(2.1) dim D = 

I-I h~j 

where hij is the hook number, that is, the number of squares in the hook through 

the (i, j )  square. Let s, t denote the number of squares of the corresponding legs 

(Fig. 1); then hlj --- s + t - 1. Hence we obtain from (2.1) 

logdim D = ~ log v - ~ log(s + t - 1) 
v~-I 

(2.2) f 
=>. ((log . )  - 1) - J ! log+(s + t - 1)dsat 

J J 

D 
_ ,  $ { 

D _  ] 

Fig. 1. 
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where log + n = log n for n => 1 and zero elsewhere,  and the integral is taken over  

the area of D with each square a unit square. 

Let  T = (k h) be a rectangle of h rows each of k squares. For  T it is easy to 

obtain an upper  bound for the integral: 

ff f f" log+(s + y - 1)dsdt <= log+(s + t)dsdt 

= [(s + t)(log+(s + t) - 1)]~ds 
) 

= �89 + h)Zlog(k + h)-�89 - �89 -~kh 

which is obta ined by using the equat ion f x ( l ogx -  1)dx = �89 _ 3 ) +  C. 

Let  x = k/h, and divide (2.2) by n = kh; using the inequali ty V"~=,log u > 

n(log n - 1): 

1 x + l l o g  h 3 l~176176176 2x +2 

(2.3) 
= log h - q~ (x) 

where 

(2.4) 

q~(x)=(1  + 2 ( 1 + 2 )  logx  2x x)  l o g ( l +  x ) -  �9 - �89 

= 1.  [F(x + 1) - F(x) - F' (x) ]  
2x 

lfo' = 2x  (1 - t)F"(x + t)dt 

with F(x) = x21ogx. Thus  

l f o '  q~(x) = ~x  (1 - t ) ( 2  log(x + t)+3)dt 

(2.5) 
< 1  = ~ (log(x + 1) + 3). 

A simple bound for ~0(x) is A(logx)/x, where  A is a constant  whose value can 

be chosen suitably, if the values of x are not  too near  to 1. It follows easily by 

computa t ion  that ~0 (x) =< (log x)/x for  x = 4.8, and, e.g., ~o (X)  =< 2(log x)/x for  

x >= 1.75. In fact, for  e > 0 there  exists Xo so that 
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(x) _---< (~ + e ) log x for x => x,,, 
x 

since the integral of (2.5) is _-> log x. 

Summarizing, we obtain: 

THEOREM I. I f  T = (kh),  then dim T >-_ (e-*t~h)kh, X = k / h  and ~o(x)--~O as 

x--~oo. Furthermore, for x _->4.8, dim T > ( x - ~ / ' h  ) ~. 

An asymptotic formula and bounds for some other diagrams will be given 
later. 

The next lemma is readily proved by a straightforward computation using the 

inequality log(l + x) < x for x > 0, or by using Newton's method to obtain a 

bound for the solution of the equation x / M -  iogx = 0, M > 0. 

LEMMA 2. I f  1 < M <= e and x > M log M, or if M > e and 

> M log M (1 log logM 
+tog M -  I)  

x 
\ 

then ( iogx ) / x  < 1/M. 

3. First applications to PI 

Let V~ be the linear space of all n-homogeneous multilinear polynomials in n 

non-commutative indeterminates, and consider it as the S,-left module (Sn the 

permutation group) given by trf[xn, " " ", x~ ] = f[x~o~, " " ', x,t,~]. 

Let I ( R )  be the set of all identities of an algebra R over a field of 

characteristic zero. The sequence of codimensions of R is defined by Regev: 

c ~ ( R ) = d i m ( V n / I ~ ( g ) ) ,  where L ( R )  = Vn fq I ( R ) .  

First we follow Regev's method of [4], but we use our bounds of dim D to 

obtain a more refined result than those of [4]. We begin by quoting some of the 

basic facts of [1] and [4]: 

Given a Young diagram of content I DI = n, let Io denote the ideal corres- 

ponding to D in the group algebra FS~, and we identify FS~ with Vn by 

identifying E a,,tr with E a~x,,~. �9 �9 x~t,~. A basic lemma of [4] which is the main 

tool is: 

(3.1) If c~ (R) < dim D then ID _C L (R). 

This has the corollary (Regev [4]): 

If c~ (R) _-< dim T, T = (k h ), then R satisfies the identity Sh [x~, �9 �9 xh ]k _- 0, 

(3.2) where Sh [x] is the standard polynomial. 
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And by [I]: 

(3.3) 

If I(R)D_ Iv, for all D'=> D, and !D'! = n + m 

then R satisfies all identities of the form 

f*[x] = ~ ot,,.m~,,x,.o,m,,x,.,2,'"m~._,x,.,,,,m," 

for all f = ~ a,rO" E Io, and all monomials m i in 1, x.+t, �9 �9 x . . . . .  

In particular we obtain: 

PROPOSITION 3. If  I(R)D_ Iv for all Young diagrams D containing the rec- 
tangle T = (k") where I D ! =  k (h + 1), then the principle ideal generated by any 

element S,[a~,. .  ",ah], a~ E R is nilpotent of index <- k. Hence, if N ( R )  is the 

sum of all nilpotent ideals of R then R /N(  R ) satisfies the identity Sh[x ] = O. 

Indeed, it follows from (3.3) and (3.2) that R satisfies the identity (with k 

factors) 

Sh[X, , ' ' ' ,xh]y,S,[X, , ' ' ' ,Xh]y_' ' '"  S,[X. , ' ' ' ,xh]yn = 0, 

and the rest follows immediately. 

We shall also need the following result of [1]: 

If for all diagrams D'  => D, 2!D ! > I O'l -- t D ! the identities I (R )  D_ It,., 

(3.4) then for all D' >= D, I (R ) D_ Io,. 

Our first result is a refinement of a result of Regev [4] who has proved the next 

theorem for k -  h~: 

THEOREM 4. (i) Let R be a PI algebra satisfying an identity of degree d >= 3, 

then for every h >= 1 + (d - 1) 2 and 

log log h 
k>h21og  h l + l o g h _ l ] ,  

the ring R satisfies the identities S~[x] = 0 and Sk [x] h = 0. 

(ii) R satisfies also the identity Sh [x] ~ = 0, for h = [4e-'/-'(d - 1)-'] + 1. 

PROOE. We follow Regev's method of [4] using our bounds, to show that for 

k, h of our theorem we have dim T > c, (R) and apply (3.2). 

Indeed, assume first that x = k /h  _->4.9, Using the bound of Latyshef that 

c, (R)_-< ( d -  1)"", we have to show, by Theorem 1, that 

1 log dim T > log h - q~(x) _-> log h - log x__> log(d - 1) 2 
n x 



0 S . A .  AMITSUR Isr. J. Math. 

or equivalently that 

log x < log h 
x (d 1) 2. 

If h _-> 1 + ( d - 1 )  2 , then log(h/(d-1)2)_-> 1/h hence it suffices to show that 

( l ogx ) / x  <= 1/h. We can apply Lemma  2, since h ~ 1 + ( d -  1)2_->5> e for d_->3, 

and obtain the first part  of our  theorem.  Note  that 

k (1 + loglog h \  > 
x = ~ >  h l o g h  l o g h _ l )  = 5  

and so the me thod  is admissible. For  d = 2 see Remark  2 below. 

REMARK 1. If we wish to obtain a result for lower x, e.g. x = 1, we have to 

use the original form of q~(x) in (2.4), e.g., q~(1) = 2 log2 -�89 Hence  for x = 1, 

1 log dim T > log h - q~(1) => log(d - 1) 2 
n 

which yields h => 4e-'/2(d - 1) 2, ~ 2.42(d - 1) 2, and proves the second part  of the 

theorem.  

REMARK 2. If R satisfies an identi ty of degree d = 2, then it evidently 

satisfies an identity of degree  3. But a simpler method  follows by noting that then 

R satisfies e i ther  $2 = x , x 2 - x 2 x ,  = 0 or x~x2 + x2x~ = 0 (or both)  and hence R 

will always satisfy S~[x,, x2] = O. 

4. A bound for dimD~ 

Let  A=(Ar ,  A ,_I , ' - . ,A0 ,  A,=>A,_~=>...=>A~=>I be a part i t ion of n =  

A1 + . "  + At, and let DA be its corresponding Young diagram. 

Two cases will be considered in this section. (i) The  number  of parts r is small 

relative to n;  (ii) D~ lies in a hook of width h. 

To  this end we use the F roben ius -Young  formula for dim DA: 

(4.1) 

l-[ (ij -L)  
dim D~ = n ! j<~ ^ ^ 

AI!A2!""  !,~, 

where  Aj = Aj + j -  1; we put  it in an equivalent  form: 

n! HH(aj-A,+j-i) = ( n 
dimD~ A I ! ' " A , !  = AI, A2,"  

(4.2) HII (Aj + j - i) 
�9 ,A, )"  C and C = 
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Since 

j i j - l  

a-c[ = [-[ (a, + i) = 1-I (aj + j  - i ) ,  
/ ~ ] !  i = l  i = 1  

both products  of the numera to r  and denomina to r  of the constant  C range over  

FI,=z II{=~ ; and hence C =< 1. On the other  hand, since a l = A, = n, 

j - i  ) ,  
(4.3) C _-> I-lI-I ,~, + i _ 1 => (n + 1 

where p = E 0' - i ) =  r ( r -  1)/2. (By using the condit ion that )ti _-> 1, one can 

obtain that C <= (n /n  + 1)~ 

Next we look for an asymptot ic  formula  for (~..'~..,,), and to this end we use the 

classical integral approximat ion  for n! and ,~j!, that is, 

n r A I (n )=  
log A l , '  " " ,  A t  v = l  i = l  v = l  

(4.4) => n(log n - 1 ) -  2 s ( l o g s  1 ) - '  s I o g s  
i = 1  

~1 r 
=> a, log g -  log n 

since V A~ = n. 

Combining the previous inequalities we finally get 

(4.5) --1 l o g d i m D ,  = > log - l o g P ( n )  
n = 

where P ( n )  is a polynomial  of n of degree  < r a. As we shall be mainly interested 

in the case n -+ m and r bounded ,  a slightly more  detailed analysis of (4.2), (4.3) 

and (4.4) will yield 

l l o g d i m D , = 2 s 1 7 6  ) .  (4.6) n ,=1 n ,~ 

This is the first step in proving the fo l lowing theorem: 

THEOREM 5. I f  {D, } ranges over a sequence of  partitions (a ) = (a , , . .  ., 11) of  
l-} I/n n of length r, and l i m ( a d n )  = 1/c, then c > r. I f  c = r then lim dim ,..,, = r, i.e., 

D,  ~ r" asymptotically; and if c > r then l i m d i m D [ / " =  O < r. 

PROOF. Since Y 1~ = n, and A, is the minimal aj, it follows that n _>- ,~r. Hence  

a , /n  < 1/r and, therefore ,  c => r. 
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We set x~ = A,/n and consider the term Y ( L / n ) l o g ( n / L )  of (4.6) as a function 

F ( x ) = E L ,  x~log(l/x~) defined in a domain 0 < b = x , = < . . . - < x , _ - < l ,  

x, + x 2 + ' " + x ,  = a and in our domain a = 1, b = l/n. Clearly F(x)  is defined 

and obtain a maximum (and minimum) in this domain. 

PROPOSITION 5'. F(x ) obtains its maximal value a �9 log(r/a), only once in the 

above domain, and this at the point x~ = a/r, i = 1, �9 �9 r. 

PROOF. Given a point ( x ) = ( x , , . . . , x , ) ,  and suppose x~ <x j  for some i ~ j ,  

then at a point (x') = (x'), x'~ = x~ + & xj = x, - 3 for small 3 still in this domain 

(and with a possible change of the indices of the x ' )  we have 

(4.7) F(x')  = F(x )  + 3 log ~ +  0(3"-) 

and so for small 3 >0 ,  F ( x ' ) > F ( x ) > F ( x )  and for 3 < 0  (and x~-3>=b) ,  

F(x ' )  < F(x) .  This implies that the maximum is obtained only if all x~ are equal, 

i.e., at the point ( a / r , . . . ,  a/r),  and there 

F = r a log Z .  
r a 

Hence, 

COROLLARY 5". If {D~ } ranges over a sequence of Young diagrams of r rows 

with length of rows A~ = n/c, + o(n) ,  then r <= c, <=.. �9 <-_ c, <= n and E(1/c,) = 1, 

= l , o g d i m D ~ = ~ A ' l o g  n ( l~  i__~ 1 N~ n n ~ + 0 =.= . l~ c' + ~ (1)" 

Next we consider diagrams D~ which lie in a hook H of the shape given in Fig. 

2, which is a hook with a middle rectangle of some size. We divide this diagram 

into three parts: D1, the part of D~ which is the horizontal leg; D2, the part in the 

Do 

J I Dt  
I 
,F" 
I 

Fig. 2. 
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vertical leg; and D,,, within the middle rectangle. Let JDt[ = u, [D2I = v and 

IDol = w so n = u + v + w. From the hook formula we obtain 

n! n! u! v! w! N h'j l'I: h'j 1-Io hi; 
(4.8) dim D. = u ! v ! w ! 

I-I hit 1-I 1-I hi', I-I Fl h,, 
I 2 0 

where h[j denotes the hook number of the corresponding subdiagram D,, D2, 

Do; l-Ii is the product of the corresponding diagram Di, and FI is the product for 

D~. Now for D2, clearly h[j = h~ and we have the same hook number, and so they 

cancel each other in the last factor of (4.8); and similarly for the diagram D~. For 

the middle part Do, in each square we have for each quotient 

since h~j =< n. Hence, 

w = I D o l .  

Thus (4.8) yields 

1 > h__~ > 1 
= h# = n 

the last factor of (4.8) is between 1 and n -w, where 

n ) dimD2dimD, dimDo>=dimDA 
/2, V, W 

(4.9) 
>=n-W( n )d imD2dimD,  dimDo. 

U~U, W 

We use this inequality to prove: 

THEOREM 6. Let Ai be the length of the rows of D~ (horizontal part of D~) and 
I~ the length of the columns of D2 (vertical part of DA), then 

A, 
(4.10) l l ~  = ~ n l ~  + 2 & l ~  n n �9 " 

PROOF. From (4.6) we have 

and if we consider the dual diagram of D2 (i.e. the rows turned into columns) 

which have the same dimension, we get 

(2) 1 log dim D2 = ~'~/d:/log v + O ( l~ . 
v v p.j 
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Finally dim Do is bounded by w! as a diagram corresponding to the symmetric 

group Sw. 

For the binomial factor (u.v.2) of (4.9) we use the asymptotic formula of the 

factorial, namely 

l og (  n ) = l o g n ! - l o g u ! - l o g v ! - l o g w !  
U, V, W 

= n (log n - 1) - u (log u - 1) - v (log v - l) - w (log w - 1) + O (log n) 

since u, v and w < n. Thus using n -- u + v + w we get 

= u log n + v log _nv + O(log n) 

noting that in the shape H, w is a bounded number, even if we vary D~ so that 

n ~ oo. This proves that 

1 log n = log  - - l o g - + O  
(0 )  n u , v , w  u n v " 

If we put the values of (1), (2), (0) in (4.9) we get 

l l o g d i m D  * U l o g n + U  l l o g d i m D , + V  n v l (lO_~nn) . . . . . . .  n n n u n l ~  + n v l ~  

_ _ n hi log ~- n v u l o g - + ~ u  log log + O  
- - n  u 

since 

Un o ( l ~  o ( l ~  o ( l ~  etc. 

Now 32 A~ = u, 32 p~j = v. Hence we have 

1 logdimDA u ~ A ~  log +log  ~ / : b  log__V+log + O  
n n u n v \  p.j 

= log Z + ~ / : b  log O 
n /~j 

which proves (4.10). 

COROLLARY 6'. If h, k are the respective width of the horizontal and vertical 
legs of H (Fig. 2), then 

dim D~/"-< (h + k ) ( l +  O (l~ n ) ) ,  
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and if v = 1D2[ = o (n),  the number of squares in the vertical leg, then dim D ~/, =< 

h ( l  + o(1)). 

PROOF. Let  h,,, ko be the respective number  of rows and column of D~, then it 

follows from (4.10), from the fact that E A~ = u, ~/x~ = v, and by Proposi t ion 5', 

that 

(4.11) n < u  n n l~ ( k " n )  + o ( l ~  " 1 logdJm D~ : n l O g  ( h o u )  + --v 

Since log x is a convex function, we have 

a l o g x +  b a x + b y  a + b  S--~--~ log y =<log a + b  

for a, b and x, y positive. In our  case we get for a = u/n, b = v/n, and from the 

fact u + v + O(1) = n, that 

l l o g d i m  D" <U+Vlog(.hu~+ko ) ( 1 )  = n < log(h,, + ko) + O 
n n + v  = 

which proves the first part  of Corol lary 6', since ho =< h, ko_-< k. 

The  second part  follows since v = o ( n ) ,  u = n + o ( n ) ,  and as x logx---~0 

when x ~ 0  the second factor of (4.11) is o(1). 

5. The codimension series 

Given the codimension series {c.(R)} of a Pl-ring R, we consider c = 

li_m_m c. (R)'/". It seems probable  that the {c. (R)t/"} has a limit, and in one case, 

Regev [5] has recently proved that for the matrix ring M r ( K )  = R then 

lim c. (R )  '/" = r 2. It follows also from [3] that this limit exists for  the exter ior  

algebra. For  general  rings we can only show that c = lirnc. (R)'J" can replace the 

Latyshef  bound ( d -  1) 2 (which is __> c)  in the main theorem of [4]; namely,  

THEOREM 7. (1) For every integer h > c, there exists k such that R satisfies the 
identity S, [x , , . . . ,  xn] k = 0 (and S~ -- 0). 

(2) I f  c > O, then for every integer h > c tog c and if c = 0 for any h >= 1, the 

ring R / N d R  ) satisfies the identity Sh [Xl, x 2 , "  ", x , ]  = 0; and the principal ideal 

generated by any finite number of values Sh [a~, �9 �9 ajh ], i = 1 , . . . ,  t is nilpotent of 
index depending only on t and h. 

(3) If  R has either no right or left annihilator (e.g. 1 @ R ), then for every integer 

h > c 2, there exists an integer k such that R satisfies all identities Io corresponding 
to a Young diagram which contains either the rectangle T = (k h) or T' = (h k). 
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PROOF. The proof of the three parts will follow the idea of section 2 by 

showing that 

t log dim D > 1 log c. (R)  
n n 

for certain n's and appropriate diagrams D, so that I(R ) ~_ Io and then we apply 

(3.2)-(3.4). 

Let c,, > c be a number (to be fixed later) and let {n, } be a sequence of integers 

such that c, (R)'/" < c,,, which exist by definition of c = lim c, (R)  TM. 
Given nE{n~} we choose k =[n/h], i.e. k < n < h ( k + l ) .  Let D be any 

Young diagram of content n, which contains the rectangle T = (k h). Hence, 

d i m D - > d i m T  (e.g. [1]). We shall choose c,, so that dimD>=dimT>=c,~,> 
c~(R), where n = ! D ! <  (k + 1)h, and then apply (3.2). 

Indeed, by Theorem 1 

l l ~ 1 7 6  n =--kh(-~hl~ 

>kh(logh-~o(x)) > k = ~ - - ~  (log h - ~o(x)) 

as n----~, also x - -~c  and so k/(k + 1)---~ 1 and ~o(x)---~0. Hence the last term 

tends to log h. Consequently, if we choose any c,, so that h > c,, > c we can find a 

large n ~E{m} and x = k/h so that 

l l o g d i m T  k (logh_p(x))>logco>logc~(R),/L 
= k + l  = 

Next we apply (3.3) and obtain that R will satisfy the identity 

S~[x~,..., xj]x~h+l'"xn = 0, from which it follows that R satisfies the identity 

Sh[x] ~§ 0 which proves (1). 

To prove (2), we follow the same ;idea: for a given Co we shall choose n E {n,} 

so that cn(R)<c~. 
But now we choose k = [n/(h + 1)], i.e. k(h + 1)=  < n < (k + 1)(h + 1), then 

for any diagram D => T = (k h) of content n, we have as before 

1 logdim D > kh(_.~hlogdimT ) kh n =-n-  - ( k  + l ) ( h  +1)  ( l~ - ~0(x)). 

If n - -*~  (in the sequence {n~}), then also x = k/h---~oo and the last term of the 

inequality tends to (h/(h + 1))log h. 

We need the fact that if h > c + log c then 
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h 
h + 1 Iogh > logc ,  

and indeed for 

h 
h + 1 l o g h - l o g c  = -  

since 

h ( l o g h - l o g c ) = h  fhd t - -  > h - c  
Jc t -  

1 [ h - c - l o g c ] > 0 ,  h + l l  [ h ( l o g h - l o g c ) - I o g c ] > ~ - - ~ =  = 

for h > c. 

If h > c + log c we can find c,~ > c and h > co,+ log c~,. Thus, it follows that 

h 
h + 1 log h > log co > log c. 

Consequently, as before we can find a sequence {n~} and for n ~ {n,}, we get the 

corresponding k, x so that (for appropriate e > O) 

1 logd imD > h n = ~ log h - e _--> log co => log c. (R)'/". 

Hence by Proposition 3 it follows that R satisfies 

sh [x ]y ,Sh  [ x l y 2 .  �9 �9 sh [x lyk  = 0 

which proves that every principal ideal in R generated by an element 

Sh [a~, . . . ,  a~] is nilpotent of exponent --< k. From this, we easily conclude that 

also any ideal generated by t elements is nilpotent of exponent _-< k �9 t. 

To prove the last part we need a simple lemma: 

LEMMA 8. If R has no right or has no left annihilator, then the sequence 

{cn (R)} is non-decreasing. 

Indeed, let R have no right annihilator, then if f i x1 , "  ", xn]xn+~ = 0 in R also 

f[x~,." . , x n ] = 0  is an identity of R. Thus, the mapping /-~[x,+, induces an 

injection of V~(R)/In(R) into Vn+~(R)/L+~(R), which proves that c~(R)<= 

c~+,(R). 
To prove part (3), we choose Co so that h >c2o>c 2 and k =[n/2h] for 

n E{n~}, i.e., 2kh <-n < 2 ( k  + l ) h ,  or equivalently 

1_> k h > l  k 
2 -  n 2 k + 1 "  
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As before, let D ~ T = (k h) and I D [ = m, where n >- 2kh > m >->_ kh. Then first 

we have 

---nl~176 mn ( ln log c, (R )) - l l ~  m ml logcm(R). 

On the other hand, 

1-J-l~ >=kh (-~h l~ T)> --m = m "--kh(l~ - (p(x)) 

n k 
- > - ' - - - - ~  (log h - ~(x)). 
- m  2 ( k +  

In order to achieve dim D _--> cm (R), we choose n E {nA } and, respectively, k 

and x, so that 

k 
2(k + 1) (logh - ~0(x))_ -> log Co, 

which is possible since the left side tends to _-> �89 log h which is _-> log co. The rest 

of the proof follows by (3.4). The second half of part (3) is a consequence of the 

observation that d im(k") - -d im(hk) ,  and all computations are therefore sym- 

metrical. 

6. Width of the hook 

Part (3) of the preceding theorem shows that given any integer m > c 2, e.g. 

m = [c :] + 1, then there exists an integer k such that for all diagrams D => ( k ' )  
or D _-> (m k), the identity I(R)  contains Iv. Let X, (R) be the co-character of R, 
i.e., the character of the representation module V,/I,  (R), and let 

(6.1) X, (R) = ~ aoxo where ao ~ O, 

then the preceding result means that these diagrams D satisfy D;N (k" )  and 

D;~ (mk). In other words, we can state this fact: 

COROLLARY 9. The diagrams olD of the co-characters of (6.1) lie in a hook H 
of the shape in Fig. 3, and the width of its legs is p = [c 2] where c = lira c, (R) ~/". 

Note that the size of the maximal square in H cannot be determined by our 

method. 
We quote an important result of Berele and Regev [2], stating that the 

coefficients of the co-characters {ao} of (6.1) satisfy Y. ao = O(n s) for some 
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H 

F 
-I 

i I 
! 
! 

Fig. 3. 

integer s, i.e. Y, ao has polynomial growth. Hence it follows from (6.1) that 
c,, (R  ) = ~, ao dim D and, therefore, 

maxdim D < c, (R ) <= max dim D �9 ~ ao <= O(nS)  " max dim D 

which implies 

(6.2) maxdim D 1/" <=c,(R)"" ~ maxd imD' / "  (1 + O (l~176 n ) ) .  

Since these diagrams lie within the hook H whose width is [c2], it follows by 
Theorem 6 that 

which proves one part of the following result: 

COROLLARY 10. I f  R has no right or left annihilator, then 

c = lira c, (R)'/" _-< lim c, (R)l/" __< 2[lim c, (R)'/" ]2; 

and i[ R satisfies the Cappelli identity, then 

lim c. (R)~J" _-< [c 2]. 

Indeed, the first part follows by passing to lim on both sides of (6.2). The 
second part of the theorem follows from the fact that in this case H can be 
replaced by a strip and then 

dim D ~/" <= [ c Z] + O 
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and the rest is as in the first part. 

An upper bound for C = lim c, (R)~/" can be given by Latyshef's result to be 

(d - 1) 2, since c, ( R ) =  < (d - 1) 2", where d is the minimal degree of the identities 

of R. A lower bound for lira c, (R)~/" can be obtain by a recent result of Regev 

[51: 
For the matrix ring R = M, (K), lim cn (R)~/~ = r 2, i.e., for these rings, there is 

always a limit to cn(R)  I/~. Using this result we can prove: 

THEOREM 10. For a PI-algebra R let N I (R)  be the sum of nilpotent ideals of 

R, then R / N l ( R )  can be embedded in some matrix ring M, (K),  K commutative, 

semi-prime, and c = lim c~ (R) ~/" ~ s 2, 

PROOF. Let /~  = R R be the product ring, i.e., the ring of all functions from R 

to R, and let L(/~) be its lower radical. Consider the sequence of maps 

~b : R ~ R --~ R / L ( R ) ,  where ~b is the diagonal embedding of R into/~ follows 

by the canonical projection. We prove Ker ~ = N~(R): indeed, if a E Ker ~ then 

for the function [ E/~,  defined by [ ( r ) =  r for every r E R, we have that 

~i[ E L(/~), where a E R R is the image of a E R, i.e. t i ( r )=  a for all r E R. 

L (/~) is nil and so tif is nilpotent, i.e., there exists m such that (tif) m = 0, hence 

for all r ~ R, (tiff" (r) = (ar)" = 0. This yields that aR is a nil ideal of bounded 

index, but R is an algebra of characteristic zero, hence by the Nagata-Higman 

theorem it is nilpotent, which implies that a E N~(R), i.e., Ker ~O C_ N~(R). 

Conversely, if a E N~(R), then a generates a nilpotent ideal aR of index m, 

then ti/~ is also nilpotent, since 

((tf~ . . . gtf,,)(r)= afl(r)afz(r)" " aim (R ) E (aR ) m = O. 

Thus a E Ker q~, and so N,(R)_C Ker ~. 

N o w / ~ / L  (R )  is a semi-prime PI-ring, and as such it is embeddable in some 

matrix ring M~ (K), K commutative and semi-prime and which satisfies the same 

identities. Hence cn ( R / L ( R  )) = cn (M, (K))  ~- s 2". On the other hand, the iden- 

tities of /~ and R are the same so that c~ ( R ) =  cn (/~), and clearly c~ (iq)-> 

cn ( R / L  (/~)) ~ s 2~, so that lim cn (R)1/, _> s 2. q.e.d. 

This number s of Theorem 10 can also be characterised in a different way. 

THEOR~.M 11. The integer s of Theorem 10 is the maximal order of matrix ring 

M , ( Q )  which satisfies all identities of R, i.e., I ( M s ( Q ) ) D  I (R  ). 

PROOF. We can replace R by the universal ring F ( x ) / I ( R ) ,  where F(x )  is the 

free ring in an infinite number of indeterminates, since the identities of R and of 
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the universal ring coincide. For the universal ring we have N I ( R ) =  

I(M,(Q))/I(R).  Indeed, N~(R) is the lower radical L ( R )  of R, since L ( R ) D  
NI(R) and if f (x)  E L (R), then (f[x ]x,+~)" = 0 in R for some m and xn+l which 

is not in the indeterminates of f[x]. In other words this means that f[x]R is a nil 

ideal of bounded index, and since the characteristic is zero, f[x] E NI(R ). Now, 

for the universal ring L ( R )  is the identity of the matrix ring, i.e. L ( R ) =  
I(M, (Q))/I(R), and t is the maximal integer for which I(M, (Q))>= I(R).  One 

can now easily verify that t = s, the integer of Theorem 10. 

COROLLARY 12. If l imcn(R) ~/n < 4 ,  then R /NI (R)  is commutative, and if 
R /NI (R)  is not commutative, then lim c~ (R) TM >= 4. 

Indeed, the first part follows since s2< 4 implies s = 1. The second part 

follows since then R / L  (R) satisfies the same identities of a matrix ring M, (K), 

t ->_2, and so cn(R) ~/~ >=c~(R/L(R)) TM --->t 2. Hence lirnc,(R) ~/" >= t2>->_4. 

7. Lim sup of the sequence {c. (R)I/" } 

Let C = lira c, (R)I/" ; we determine a lower bound for the ultimate width of 

the hook in which the diagrams D of the co-characters X, (R) of (6.1) lie in terms 

of C if C > 0. More precisely: 

THEOREM 13. For any integer N, there exist diagrams D of the co-character 

such that D contains either a hook T of width k and h, or a strip T = (a h ) or (h ~ ) 
such that [ T[ > N and h + k > C, and h >_ C for the case of a strip T (Fig. 4). 

We need a few preliminary results. 

LEMMA 13'. Let D be a Young diagram of content n, divided into a union of 
diagrams D~, [ Di I =di ,  i = 0, 1,2,. �9 r; then 

d i m D  < ( n ) d i m D o d i m D 1 . . . d i m D , .  
= do, d l , . . . , d ,  

Fig. 4. 

T 
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The proof follows the same method as that of (4.9): 

v ~ 1 7  I1<,,, ~ _ n ! _ n .  I1~,,~ h c,, J d i m D  lIhi~ d,,! '- d~. _~j ,l, h~j 

where II~,,~ is the product ranging over the subdiagram D,, with hook numbers 

h~'~ Clearly h!e'_< h,j, so that the last factor is < 1 which proves the lemma. i j  �9 , *  l I - -  = 

We are going to use this lemma in a special case where all D,, cxcept D,, are 

either rows or columns of length d~ and width 1 (Fig. 5). In this case we show: 

COROLLARY 13". dim D <= (n / (h  + k ) ) " ( h  + k)". 

D. 

kl 
JJ" 

! t 

_J.~' 

f I i 
h "1"-' 

.3 

Fig. 5. 

D:  
! ~ 

Indeed, by the preceding lemma we have, in our case, dim Di = 1 for i > 1. 

Also dim Do= < do! since IDol = d.. Hence it follows by Lemma 13' that 

( ( ) (  ) d i m D  < n d . ! =  n d,,! n - d o  < n d , , ( h + k ) , ,  d,,. 
= d,,, dl," �9 ", dh+k d. d l ,  d2 , "  �9 ", d, = 

We turn to the proof of the theorem. By the statement preceding (6.2) it 

follows that there exist constants K and s so that c~ ( R ) <  Kn" dim D for some 

diagram D which lies in the co-character x , (R) .  Next, the definition of C 

implies that given e > 0  there exists an infinite sequence {n,} such that for 

n E{m},  c , ( R ) > ( C - e / 2 f .  

Using the last corollary we obtain 

(7.1) (C - e/2)" < co (R  ) <= KnSnd,,(h + k )L 

The procedure of choosing the diagrams D is as follows: 
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Given N and e > 0 ,  find a sequence {n~} such that for all n ~{n~}, Cn(R)~= 
(C - e/2)  n. For each n E {n, } choose a diagram D such that c. ( R )  <= Kn ~ dim D. 

Now we consider two cases. 

Case 1. These diagrams D have unbounded height and width. In this case 

we choose integer a = b in Fig. 5, which will be chosen later depending on N 

and C, and R. To each D we cut the diagram at height and width a, and set Do to 

be the remaining squares; then do = I D,,]--< a-'. Next we choose n E{n~} large 

enough such that 

h + k > ( C -  e l 2 ) ( K n  . . . .  )-,in ____> C -  e 

which is possible for large n in the sequence {n,}, since by the lemma 

(C - e/2)" =< Kn~+d"(h + k )" <-_ Kn  . . . .  (h + k )". 

If we choose e > 0  small enough so that C - e  > [ C ]  if C / [ C ] ,  we get 

h + k => C since h + k is an integer; and if C is an integer and C - e > C - 1, we 

also have h + k => C. 

Finally, if T is the hook in D based on k and h we get 

IT I = (k + h )a  - kh >= (k + h )a  -p~- 

where p is an upper bound for the hook of shape H (Fig. 3) in which all these 

diagrams D lie. Hence, if we choose a > ( N + p 2 ) / C  we have IT I> N as 

required. 

Case 2. The chosen diagrams have either a bounded height or width (say of 

bounded height). Then we choose b in Fig. 5 to be the maximum height. We 

repeat the preceding procedure with k = 0, and take the leg of D cut at distance 

a (Fig. 5); then do = I D t  Nab .  Also, choose n large enough so that 

h > ( C -  e /2) (Kn~n ab) ,in >= C -  e, 

hence, as before, h _-> C. 

Finally, in this case we obtain the strip T of height h and length a, so that 

I T i >= ha > N if we choose a > N/C.  

8. Appendix 1. An asymptotic formula 

The lower bound of dim(k h) given in section 1 is not far from the asymptotic 

formula, which proves that we cannot expect that this computational method of 

finding h, k, so that S~[x] = 0 holds, will yield any result for h < 1 + (d - 1) 2, 

although we know it holds for h = [d/2]. 
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THEOREM 14. dim[k "] = C(k + h)m:nS/'2(e-~tX)h)"(1 + O(1/n)); x = k/h, 
n =kh,  where ~o(x) is the function in (2.4), and some constant C =  

Co(1 + O(1/h)). 

We use the Stirling formula 

(8.1) ~ i o g  v - n (log n - 1) + �89 log n + O (1). 

Following the formulas of (2.2) we have 

k h 

E l o g ( s + t - 1 ) = E  E i o g ( s + t - 1 )  
t = l  s ~ l  

k + h  k h 

= ~  ( k + h - v ) l o g v - ~ ( k - v ) l o g v - ~ ( l - v ) i o g v  
v ~ l  v = l  v = l  

= g(k + h ) -  g(k ) -  g(h ) 

where g(m) = X~%, (/.t - v)log v. The last formula is obtained by setting s + t - 

1 = v and summing in three areas, v < k (say k ~ h), k => v > h, and v =< h. We 

then get 

= ~ ( k + h - v ) i o g v +  h l o g v +  v l o g v  
t ~ l  s = l  v ~ [ + 1  v = h + l  v ~ l  

k + h  k h 

= X ( k + h - - v ) l ~  X i o g v + ~  v l o g v  
v ~ l  v ~ h + l  

and the rest is immediate (when h = k the empty sum is taken to be zero). 

Next we obtain an asymptotic formula for g(m). First, we need the well 

known formula 

m 2 log v = m[m(log m - 1)+�89 m + C + O(1/m)] 

Then 

1 m = m 2 1 o g m - m 2 + 2  l o g m + C m + O ( 1 ) .  

v log  v =�89 2 [ v 2 - (  v -  1) 2+1] l~  v 

-- ~* v 2 log v - v 2 log(v + 1) - log v 

m 2 m - I  

= "-~ log m - �89 ~=i v2 log v + 1 + �89 ~ log v. 
V v ~ l  
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Note that 

l o g U + l  I 1 ,  I O(v) 
= 0 _ - < 0 < I .  

/2 V 

Hence 

m 2 (m - 1)_~ m -  1 = ~ - l o g m  - m  
, . ~  4 4 

-~[log m + C + O(1/m)] + O(1) 

+�89 (log m - 1) + �89 log m + O(1)l 

11,/2 /1.12 
=_~_ log m _ . T +  m l ~ + ~ m  logm + ~ l o g  m + O(1) 

where C is Euler's constant. Hence 

~ 2  3 2 
g ( m ) =  ( m - u ) l o g u = - - f f l o g m - ~ m  - ~ l o g m + A m + O ( 1 )  

for some constant A. 

Finally, by (8.1) for n = kh, x = k/h, we obtain that 

log dim(k ~) = In (log n - 1)+-~ tog n + O(1)] 

-[�89 + h) 2 log(k + h ) -  ~(k + h)2-~  log(k + h ) -  A (k + h)] 

+ [�89 2 log k -~k  2 - ~ l o g  k + ak]  

+ [�89 --~h 2 - ~ l o g  h + Ah] + O(1) 

= n[log h - q~(x )] + �89 n + ~ log ( - ~ )  + O(1) 

which proves that, for n = kh, 

dim(k h) = (e-'~"~h )"n m~(k + h )tll~ g(n, h ). 

If we use one additional term in the approximation of E log u and E v log u, we 
can show that g(n, h) = C(1 + O(1/n)) for some constant C = C(h), which is of 

the form Co(1 + O(1/h)). 
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