

THE SEQUENCE OF CODIMENSIONS OF PI-ALGEBRAS

BY
S. A. AMITSUR

ABSTRACT

Bounds and asymptotic formulas are given for the size of the irreducible representations of the symmetric groups. These are applied to obtain information on the identities and codimension sequence $c_n(R)$ of a PI-algebra R of characteristic zero, e.g., the “ultimate” width of the hook in which the diagrams of the cocharacters of R lies is $\leq (\lim c_n(R)^{1/n})^2$, and $\lim c_n(R)^{1/n} \leq 2(\lim c_n(R)^{1/n})^2$ for rings with no right (or left) total annihilators.

1. Introduction

The relation between the representations of the symmetric group and the polynomial identities $I(R)$ of an algebra R of characteristic zero, has been developed by Regev in a sequence of papers. The basic idea is to consider the set of multilinear homogeneous polynomials V_n in n non-commutative indeterminates x_1, \dots, x_n as an S_n -module, isomorphic with FS_n , by setting $\sigma f[x_1, \dots, x_n] = f[x_{\sigma(1)}, \dots, x_{\sigma(n)}]$, the polynomials of V_n which are identities of R , i.e. $I_n(R) = I(R) \cap V_n$ is a left S_n -module, and by identifying V_n with the group ring FS_n , $I_n(R)$ is a left ideal in FS_n . The n -th cocharacter $x_n(R)$ is the character of the quotient module $V_n/I_n(R)$, and its dimension $c_n(R)$ is the n -th codimension of R . $V_n/I_n(R)$ is a direct sum of irreducible left ideals I_D , and $c_n(R) = \sum a_D \dim D$. In particular, if for some Young diagram D' , $\dim D' > c_n(R)$, then the two-sided ideal $I_{D'}$ is included in $I_n(R)$. Regev in [4] has shown that the classical result, that R satisfies a power of standard polynomial $S_h[x_1, \dots, x_n]^k = 0$, can be shown with $h = (d-1)^2 + 1$, and $k \sim h^4$ where d is the degree of a minimal identity of R . In [1], Regev and the author have shown that the diagrams D of the cocharacter lie in a hook of width $\sim e(d-1)^4$.

The present paper uses the methods developed by Regev and in [1], to obtain more refined results in this direction.

Received May 31, 1983

First we obtain better bounds for $\dim(k^h)$ of a Young diagram of rectangles $k \times h$, and of hooks shown in Fig. 2. These bounds are used to show, e.g., that $S_h^k[x] = 0$ will hold for $k \sim h^2 \log h$ which is better than the bound of [4].

Next we consider $\underline{\lim} c_n(R)^{1/n} = c$, and prove that c can replace Latyshev bound $(d-1)^2$ which was used in [1] and [4], but then without giving precise bounds, but rather results of the form, e.g.: (1) for each $h > c$ there exists k such that R satisfies $S_h^k[x]^k = 0$; (2) the diagrams D of the cocharacter lie in a hook of the shape in Fig. 3 (Corollary 9) with 'ultimate' width $\leq c^2$. An interesting corollary is that $\underline{\lim} c_n(R)^{1/n}$ and $\overline{\lim} c_n(R)^{1/n}$ are not independent. For matrix rings and for the exterior algebra actually $\lim c_n(R)^{1/n}$ exists (Regev [5], Drensky [3]). In the general case we could only prove that $\underline{\lim} c_n(R)^{1/n} \leq 2(\overline{\lim} c_n(R)^{1/n})^2$. A lower bound for c is s^2 , where s is a size of matrices in which $R/N_1(R)$ can be embedded, where $N_1(R)$ is the sum of all nilpotent ideals of R .

2. Dimensions of the representations of S_n

All algebras and representations in this paper are over fields of characteristic zero. Let D be a Young diagram of content n ; $\dim D$ will denote the dimension of the corresponding representation of the symmetric group S_n .

To compute a lower bound for $\dim D$ we use the hook formula

$$(2.1) \quad \dim D = \frac{n!}{\prod h_{ij}}$$

where h_{ij} is the hook number, that is, the number of squares in the hook through the (i, j) square. Let s, t denote the number of squares of the corresponding legs (Fig. 1); then $h_{ij} = s + t - 1$. Hence we obtain from (2.1)

$$(2.2) \quad \begin{aligned} \log \dim D &= \sum_{\nu=1}^n \log \nu - \sum \log(s + t - 1) \\ &\geq n((\log n) - 1) - \iint \log^+(s + t - 1) ds dt \end{aligned}$$

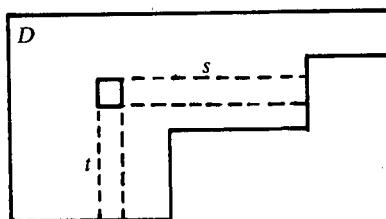


Fig. 1.

where $\log^+ n = \log n$ for $n \geq 1$ and zero elsewhere, and the integral is taken over the area of D with each square a unit square.

Let $T = (k^h)$ be a rectangle of h rows each of k squares. For T it is easy to obtain an upper bound for the integral:

$$\begin{aligned} \iint \log^+(s + y - 1) ds dt &\leq \int_0^k \int_0^h \log^+(s + t) ds dt \\ &= \int_0^k [(s + t)(\log^+(s + t) - 1)]_0^h ds \\ &= \frac{1}{2}(k + h)^2 \log(k + h) - \frac{1}{2}k^2 \log k - \frac{1}{2}h^2 \log h - \frac{3}{2}kh \end{aligned}$$

which is obtained by using the equation $\int x(\log x - 1) dx = \frac{1}{2}x^2(\log x - \frac{3}{2}) + C$.

Let $x = k/h$, and divide (2.2) by $n = kh$; using the inequality $\sum_{\nu=1}^n \log \nu \geq n(\log n - 1)$:

$$\begin{aligned} \frac{1}{n} \log \dim T &\geq \log x h^2 - 1 - \frac{1}{2x} (1+x)^2 \log(1+x)h + \frac{x}{2} \log x h + \frac{1}{2x} \log h + \frac{3}{2} \\ (2.3) \quad &= \log h - \varphi(x) \end{aligned}$$

where

$$\begin{aligned} \varphi(x) &= \frac{(1+x)^2}{2x} \log(1+x) - \left(1 + \frac{x}{2}\right) \cdot \log x - \frac{1}{2} \\ (2.4) \quad &= \frac{1}{2x} [F(x+1) - F(x) - F'(x)] \\ &= \frac{1}{2x} \int_0^1 (1-t)F''(x+t) dt \end{aligned}$$

with $F(x) = x^2 \log x$. Thus

$$\begin{aligned} \varphi(x) &= \frac{1}{2x} \int_0^1 (1-t)(2 \log(x+t) + 3) dt \\ (2.5) \quad &\leq \frac{1}{2x} (\log(x+1) + \frac{3}{2}). \end{aligned}$$

A simple bound for $\varphi(x)$ is $A(\log x)/x$, where A is a constant whose value can be chosen suitably, if the values of x are not too near to 1. It follows easily by computation that $\varphi(x) \leq (\log x)/x$ for $x \geq 4.8$, and, e.g., $\varphi(x) \leq 2(\log x)/x$ for $x \geq 1.75$. In fact, for $\varepsilon > 0$ there exists x_0 so that

$$\varphi(x) \leq (\frac{1}{2} + \varepsilon) \frac{\log x}{x} \quad \text{for } x \geq x_0,$$

since the integral of (2.5) is $\geq \log x$.

Summarizing, we obtain:

THEOREM 1. *If $T = (k^h)$, then $\dim T \geq (e^{-\varphi(x)} h)^{kh}$, $x = k/h$ and $\varphi(x) \rightarrow 0$ as $x \rightarrow \infty$. Furthermore, for $x \geq 4.8$, $\dim T \geq (x^{-1/x} h)^n$.*

An asymptotic formula and bounds for some other diagrams will be given later.

The next lemma is readily proved by a straightforward computation using the inequality $\log(1+x) < x$ for $x > 0$, or by using Newton's method to obtain a bound for the solution of the equation $x/M - \log x = 0$, $M > 0$.

LEMMA 2. *If $1 < M \leq e$ and $x > M \log M$, or if $M > e$ and*

$$x > M \log M \left(1 + \frac{\log \log M}{\log M - 1} \right)$$

then $(\log x)/x < 1/M$.

3. First applications to PI

Let V_n be the linear space of all n -homogeneous multilinear polynomials in n non-commutative indeterminates, and consider it as the S_n -left module (S_n the permutation group) given by $of[x_1, \dots, x_n] = f[x_{\sigma(1)}, \dots, x_{\sigma(n)}]$.

Let $I(R)$ be the set of all identities of an algebra R over a field of characteristic zero. The sequence of codimensions of R is defined by Regev: $c_n(R) = \dim(V_n/I_n(R))$, where $I_n(R) = V_n \cap I(R)$.

First we follow Regev's method of [4], but we use our bounds of $\dim D$ to obtain a *more* refined result than those of [4]. We begin by quoting some of the basic facts of [1] and [4]:

Given a Young diagram of content $|D| = n$, let I_D denote the ideal corresponding to D in the group algebra FS_n , and we identify FS_n with V_n by identifying $\sum \alpha_\sigma \sigma$ with $\sum \alpha_\sigma x_{\sigma(1)} \cdots x_{\sigma(n)}$. A basic lemma of [4] which is the main tool is:

$$(3.1) \quad \text{If } c_n(R) < \dim D \text{ then } I_D \subseteq I_n(R).$$

This has the corollary (Regev [4]):

If $c_n(R) \leq \dim T$, $T = (k^h)$, then R satisfies the identity $S_h[x_1, \dots, x_h]^k = 0$,

$$(3.2) \quad \text{where } S_h[x] \text{ is the standard polynomial.}$$

And by [1]:

If $I(R) \supseteq I_{D'}$ for all $D' \geq D$, and $|D'| = n + m$
then R satisfies all identities of the form

$$(3.3) \quad f^*[x] = \sum \alpha_\sigma m_{i_0} x_{\sigma(1)} m_{i_1} x_{\sigma(2)} \cdots m_{i_{n-1}} x_{\sigma(n)} m_{i_n}$$

for all $f = \sum \alpha_\sigma \sigma \in I_D$, and all monomials m_i in $1, x_{n+1}, \dots, x_{n+m}$.

In particular we obtain:

PROPOSITION 3. *If $I(R) \supseteq I_D$ for all Young diagrams D containing the rectangle $T = (k^h)$ where $|D| = k(h+1)$, then the principle ideal generated by any element $S_h[a_1, \dots, a_h]$, $a_i \in R$ is nilpotent of index $\leq k$. Hence, if $N(R)$ is the sum of all nilpotent ideals of R then $R/N(R)$ satisfies the identity $S_h[x] = 0$.*

Indeed, it follows from (3.3) and (3.2) that R satisfies the identity (with k factors)

$$S_h[x_1, \dots, x_h] y_1 S_h[x_1, \dots, x_h] y_2 \cdots S_h[x_1, \dots, x_h] y_h = 0,$$

and the rest follows immediately.

We shall also need the following result of [1]:

$$(3.4) \quad \text{If for all diagrams } D' \geq D, 2|D| > |D'| \geq |D| \text{ the identities } I(R) \supseteq I_{D'}, \text{ then for all } D' \geq D, I(R) \supseteq I_{D'}.$$

Our first result is a refinement of a result of Regev [4] who has proved the next theorem for $k \sim h^4$:

THEOREM 4. (i) *Let R be a PI algebra satisfying an identity of degree $d \geq 3$, then for every $h \geq 1 + (d-1)^2$ and*

$$k > h^2 \log h \left(1 + \frac{\log \log h}{\log h - 1} \right),$$

the ring R satisfies the identities $S_h^k[x] = 0$ and $S_k[x]^h = 0$.

(ii) *R satisfies also the identity $S_h[x]^h = 0$, for $h = [4e^{-1/2}(d-1)^2] + 1$.*

PROOF. We follow Regev's method of [4] using our bounds, to show that for k, h of our theorem we have $\dim T > c_n(R)$ and apply (3.2).

Indeed, assume first that $x = k/h \geq 4.9$, Using the bound of Latyshev that $c_n(R) \leq (d-1)^{2n}$, we have to show, by Theorem 1, that

$$\frac{1}{n} \log \dim T > \log h - \varphi(x) \geq \log h - \frac{\log x}{x} \geq \log(d-1)^2$$

or equivalently that

$$\frac{\log x}{x} < \log \frac{h}{(d-1)^2}.$$

If $h \geq 1 + (d-1)^2$, then $\log(h/(d-1)^2) \geq 1/h$ hence it suffices to show that $(\log x)/x \leq 1/h$. We can apply Lemma 2, since $h \geq 1 + (d-1)^2 \geq 5 > e$ for $d \geq 3$, and obtain the first part of our theorem. Note that

$$x = \frac{k}{h} > h \log h \left(1 + \frac{\log \log h}{\log h - 1}\right) \geq 5$$

and so the method is admissible. For $d = 2$ see Remark 2 below.

REMARK 1. If we wish to obtain a result for lower x , e.g. $x = 1$, we have to use the original form of $\varphi(x)$ in (2.4), e.g., $\varphi(1) = 2 \log 2 - \frac{1}{2}$. Hence for $x = 1$,

$$\frac{1}{n} \log \dim T > \log h - \varphi(1) \geq \log(d-1)^2$$

which yields $h \geq 4e^{-1/2}(d-1)^2$, $\approx 2.42(d-1)^2$, and proves the second part of the theorem.

REMARK 2. If R satisfies an identity of degree $d = 2$, then it evidently satisfies an identity of degree 3. But a simpler method follows by noting that then R satisfies either $S_2 = x_1x_2 - x_2x_1 = 0$ or $x_1x_2 + x_2x_1 = 0$ (or both) and hence R will always satisfy $S_2^2[x_1, x_2] = 0$.

4. A bound for $\dim D_\lambda$

Let $\lambda = (\lambda_r, \lambda_{r-1}, \dots, \lambda_1)$, $\lambda_r \geq \lambda_{r-1} \geq \dots \geq \lambda_1 \geq 1$ be a partition of $n = \lambda_1 + \dots + \lambda_r$, and let D_λ be its corresponding Young diagram.

Two cases will be considered in this section. (i) The number of parts r is small relative to n ; (ii) D_λ lies in a hook of width h .

To this end we use the Frobenius-Young formula for $\dim D_\lambda$:

$$(4.1) \quad \dim D_\lambda = n! \frac{\prod_{j < i} (\hat{\lambda}_j - \hat{\lambda}_i)}{\hat{\lambda}_1! \hat{\lambda}_2! \dots \hat{\lambda}_r!}$$

where $\hat{\lambda}_j = \lambda_j + j - 1$; we put it in an equivalent form:

$$(4.2) \quad \dim D_\lambda = \frac{n!}{\lambda_1! \dots \lambda_r!} \frac{\prod \prod (\lambda_j - \lambda_i + j - i)}{\prod \prod (\lambda_j + j - i)} = \binom{n}{\lambda_1, \lambda_2, \dots, \lambda_r} \cdot C \text{ and } C = C(\lambda).$$

Since

$$\frac{\hat{\lambda}_j!}{\lambda_j!} = \prod_{i=1}^{j-1} (\lambda_j + i) = \prod_{i=1}^{j-1} (\lambda_j + j - i),$$

both products of the numerator and denominator of the constant C range over $\prod_{j=2}^r \prod_{i=1}^{j-1}$; and hence $C \leq 1$. On the other hand, since $\lambda_1 \leq \lambda_j \leq n$,

$$(4.3) \quad C \leq \prod \prod \frac{j-i}{\lambda_j + j - 1} \leq (n+1)^{-\rho}$$

where $\rho = \sum(j-i) = r(r-1)/2$. (By using the condition that $\lambda_i \geq 1$, one can obtain that $C \leq (n/n+1)^\rho$.)

Next we look for an asymptotic formula for $\binom{n}{\lambda_1, \dots, \lambda_r}$, and to this end we use the classical integral approximation for $n!$ and $\lambda_j!$, that is,

$$(4.4) \quad \begin{aligned} \log \binom{n}{\lambda_1, \dots, \lambda_r} &= \sum_{\nu=1}^n \log \nu - \sum_{i=1}^r \sum_{\nu=1}^{\lambda_i} \log \nu \\ &\geq n(\log n - 1) - \sum_{i=1}^r \lambda_i (\log \lambda_i - 1) - \frac{1}{2} \sum \log \lambda_i \\ &\geq \sum \lambda_i \log \frac{n}{\lambda_i} - \frac{r}{2} \log n \end{aligned}$$

since $\sum \lambda_i = n$.

Combining the previous inequalities we finally get

$$(4.5) \quad \frac{1}{n} \log \dim D_\lambda \geq \sum_{i=1}^r \frac{\lambda_i}{n} \log \frac{n}{\lambda_i} - \frac{1}{n} \log P(n)$$

where $P(n)$ is a polynomial of n of degree $\leq r^2$. As we shall be mainly interested in the case $n \rightarrow \infty$ and r bounded, a slightly more detailed analysis of (4.2), (4.3) and (4.4) will yield

$$(4.6) \quad \frac{1}{n} \log \dim D_\lambda = \sum_{i=1}^r \frac{\lambda_i}{n} \log \frac{n}{\lambda_i} + O\left(\frac{\log n}{n}\right).$$

This is the first step in proving the following theorem:

THEOREM 5. *If $\{D_\lambda\}$ ranges over a sequence of partitions $(\lambda) = (\lambda_r, \dots, \lambda_1)$ of n of length r , and $\lim(\lambda_1/n) = 1/c$, then $c \geq r$. If $c = r$ then $\lim \dim D_\lambda^{1/n} = r$, i.e., $D_\lambda \sim r^n$ asymptotically; and if $c > r$ then $\overline{\lim} \dim D_\lambda^{1/n} = \rho < r$.*

PROOF. Since $\sum \lambda_i = n$, and λ_1 is the minimal λ_i , it follows that $n \geq \lambda_1 r$. Hence $\lambda_1/n \leq 1/r$ and, therefore, $c \geq r$.

We set $x_i = \lambda_i/n$ and consider the term $\Sigma(\lambda_i/n)\log(n/\lambda_i)$ of (4.6) as a function $F(x) = \sum_{i=1}^r x_i \log(1/x_i)$ defined in a domain $0 < b \leq x_1 \leq \dots \leq x_r \leq 1$, $x_1 + x_2 + \dots + x_r = a$ and in our domain $a = 1$, $b = 1/n$. Clearly $F(x)$ is defined and obtain a maximum (and minimum) in this domain.

PROPOSITION 5'. *$F(x)$ obtains its maximal value $a \cdot \log(r/a)$, only once in the above domain, and this at the point $x_i = a/r$, $i = 1, \dots, r$.*

PROOF. Given a point $(x) = (x_1, \dots, x_r)$, and suppose $x_i < x_j$ for some $i \neq j$, then at a point $(x') = (x'_i)$, $x'_i = x_i + \delta$, $x_j = x_i - \delta$ for small δ still in this domain (and with a possible change of the indices of the x'_i) we have

$$(4.7) \quad F(x') = F(x) + \delta \log \frac{x_j}{x_i} + O(\delta^2)$$

and so for small $\delta > 0$, $F(x') > F(x) > F(x)$ and for $\delta < 0$ (and $x_i - \delta \geq b$), $F(x') < F(x)$. This implies that the maximum is obtained only if all x_i are equal, i.e., at the point $(a/r, \dots, a/r)$, and there

$$F = r \frac{a}{r} \log \frac{r}{a}.$$

Hence,

COROLLARY 5''. *If $\{D_\lambda\}$ ranges over a sequence of Young diagrams of r rows with length of rows $\lambda_i = n/c_i + o(n)$, then $r \leq c_1 \leq \dots \leq c_r \leq n$ and $\Sigma(1/c_i) = 1$,*

$$N_\lambda = \frac{1}{n} \log \dim D_\lambda = \sum \frac{\lambda_i}{n} \log \frac{n}{\lambda_i} + O\left(\frac{\log n}{n}\right) = \sum_{i=1}^r \frac{1}{c_i} \log c_i + o(1).$$

Next we consider diagrams D_λ which lie in a hook H of the shape given in Fig. 2, which is a hook with a middle rectangle of some size. We divide this diagram into three parts: D_1 , the part of D_λ which is the horizontal leg; D_2 , the part in the

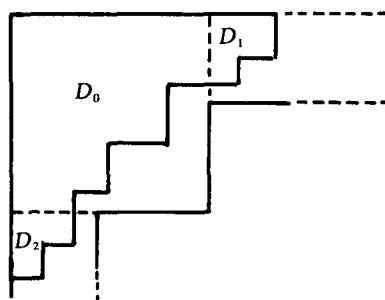


Fig. 2.

vertical leg; and D_0 , within the middle rectangle. Let $|D_1| = u$, $|D_2| = v$ and $|D_0| = w$ so $n = u + v + w$. From the hook formula we obtain

$$(4.8) \quad \dim D_\lambda = \frac{n!}{\prod h_{ij}} = \frac{n!}{u!v!w!} \cdot \frac{u!}{\prod_1 h'_{ij}} \cdot \frac{v!}{\prod_2 h'_{ij}} \cdot \frac{w!}{\prod_0 h'_{ij}} \cdot \frac{\prod_1 h'_{ij} \prod_2 h'_{ij} \prod_0 h'_{ij}}{\prod h_{ij}}$$

where h'_{ij} denotes the hook number of the corresponding subdiagram D_1 , D_2 , D_0 ; \prod_i is the product of the corresponding diagram D_i , and \prod is the product for D_λ . Now for D_2 , clearly $h'_{ij} = h_{ij}$ and we have the same hook number, and so they cancel each other in the last factor of (4.8); and similarly for the diagram D_1 . For the middle part D_0 , in each square we have for each quotient

$$1 \geq \frac{h'_{ij}}{h_{ij}} \geq \frac{1}{n}$$

since $h_{ij} \leq n$. Hence, the last factor of (4.8) is between 1 and n^{-w} , where $w = |D_0|$.

Thus (4.8) yields

$$(4.9) \quad \begin{aligned} \binom{n}{u, v, w} \dim D_2 \dim D_1 \dim D_0 &\geq \dim D_\lambda \\ &\geq n^{-w} \binom{n}{u, v, w} \dim D_2 \dim D_1 \dim D_0. \end{aligned}$$

We use this inequality to prove:

THEOREM 6. *Let λ_i be the length of the rows of D_1 (horizontal part of D_λ) and μ_i the length of the columns of D_2 (vertical part of D_λ), then*

$$(4.10) \quad \frac{1}{n} \log \dim D_\lambda = \sum \frac{\lambda_i}{n} \log \frac{n}{\lambda_i} + \sum \frac{\mu_i}{n} \log \frac{n}{\mu_i} + O\left(\frac{\log n}{n}\right).$$

PROOF. From (4.6) we have

$$(1) \quad \frac{1}{u} \log \dim D_1 = \sum \frac{\lambda_i}{u} \log \frac{u}{\lambda_i} + O\left(\frac{\log u}{u}\right),$$

and if we consider the dual diagram of D_2 (i.e. the rows turned into columns) which have the same dimension, we get

$$(2) \quad \frac{1}{v} \log \dim D_2 = \sum \frac{\mu_i}{v} \log \frac{v}{\mu_i} + O\left(\frac{\log v}{v}\right).$$

Finally $\dim D_0$ is bounded by $w!$ as a diagram corresponding to the symmetric group S_w .

For the binomial factor $\binom{n}{u, v, w}$ of (4.9) we use the asymptotic formula of the factorial, namely

$$\log \binom{n}{u, v, w} = \log n! - \log u! - \log v! - \log w!$$

$$= n(\log n - 1) - u(\log u - 1) - v(\log v - 1) - w(\log w - 1) + O(\log n)$$

since u, v and $w < n$. Thus using $n = u + v + w$ we get

$$= u \log \frac{n}{u} + v \log \frac{n}{v} + O(\log n)$$

noting that in the shape H , w is a bounded number, even if we vary D_λ so that $n \rightarrow \infty$. This proves that

$$(0) \quad \frac{1}{n} \log \binom{n}{u, v, w} = \frac{u}{n} \log \frac{n}{u} + \frac{v}{n} \log \frac{n}{v} + O\left(\frac{\log n}{n}\right).$$

If we put the values of (1), (2), (0) in (4.9) we get

$$\begin{aligned} \frac{1}{n} \log \dim D_\lambda &= \frac{u}{n} \log \frac{n}{u} + \frac{u}{n} \cdot \frac{1}{u} \log \dim D_1 + \frac{v}{n} \log \frac{n}{v} + \frac{v}{n} \frac{1}{v} \log \dim D_2 + O\left(\frac{\log n}{n}\right) \\ &= \frac{u}{n} \left(\log \frac{n}{u} + \sum \frac{\lambda_i}{u} \log \frac{u}{\lambda_i} \right) + \frac{v}{n} \left(\log \frac{n}{v} + \sum \frac{\mu_j}{v} \log \frac{v}{\mu_j} \right) + O\left(\frac{\log n}{n}\right) \end{aligned}$$

since

$$\frac{u}{n} O\left(\frac{\log u}{u}\right) = O\left(\frac{\log u}{n}\right) = O\left(\frac{\log n}{n}\right) \text{ etc.}$$

Now $\sum \lambda_i = u$, $\sum \mu_j = v$. Hence we have

$$\begin{aligned} \frac{1}{n} \log \dim D_\lambda &= \frac{u}{n} \sum \frac{\lambda_i}{u} \left(\log \frac{u}{\lambda_i} + \log \frac{n}{u} \right) + \frac{v}{n} \sum \frac{\mu_j}{v} \left(\log \frac{v}{\mu_j} + \log \frac{n}{v} \right) + O\left(\frac{\log n}{n}\right) \\ &= \sum \frac{\lambda_i}{n} \log \frac{n}{\lambda_i} + \sum \frac{\mu_j}{n} \log \frac{n}{\mu_j} + O\left(\frac{\log n}{n}\right) \end{aligned}$$

which proves (4.10).

COROLLARY 6'. *If h, k are the respective width of the horizontal and vertical legs of H (Fig. 2), then*

$$\dim D_\lambda^{1/n} \leq (h+k) \left(1 + O\left(\frac{\log n}{n}\right) \right),$$

and if $v = |D_2| = o(n)$, the number of squares in the vertical leg, then $\dim D_\lambda^{1/n} \leq h(1 + o(1))$.

PROOF. Let h_0, k_0 be the respective number of rows and column of D_λ , then it follows from (4.10), from the fact that $\sum \lambda_i = u$, $\sum \mu_j = v$, and by Proposition 5', that

$$(4.11) \quad \frac{1}{n} \log \dim D_\lambda \leq \frac{u}{n} \log \left(h_0 \frac{n}{u} \right) + \frac{v}{n} \log \left(k_0 \frac{n}{v} \right) + O\left(\frac{\log n}{n}\right).$$

Since $\log x$ is a convex function, we have

$$\frac{a}{a+b} \log x + \frac{b}{a+b} \log y \leq \log \frac{ax+by}{a+b}$$

for a, b and x, y positive. In our case we get for $a = u/n$, $b = v/n$, and from the fact $u + v + O(1) = n$, that

$$\frac{1}{n} \log \dim D_\lambda \leq \frac{u+v}{n} \log \frac{(h_0+k_0)}{u+v} n \leq \log(h_0+k_0) + O\left(\frac{1}{n}\right)$$

which proves the first part of Corollary 6', since $h_0 \leq h$, $k_0 \leq k$.

The second part follows since $v = o(n)$, $u = n + o(n)$, and as $x \log x \rightarrow 0$ when $x \rightarrow 0$ the second factor of (4.11) is $o(1)$.

5. The codimension series

Given the codimension series $\{c_n(R)\}$ of a PI-ring R , we consider $c = \lim c_n(R)^{1/n}$. It seems probable that the $\{c_n(R)^{1/n}\}$ has a limit, and in one case, Regev [5] has recently proved that for the matrix ring $M_r(K) = R$ then $\lim c_n(R)^{1/n} = r^2$. It follows also from [3] that this limit exists for the exterior algebra. For general rings we can only show that $c = \lim c_n(R)^{1/n}$ can replace the Latyshev bound $(d-1)^2$ (which is $\geq c$) in the main theorem of [4]; namely,

THEOREM 7. (1) For every integer $h > c$, there exists k such that R satisfies the identity $S_h[x_1, \dots, x_n]^k = 0$ (and $S_h^k = 0$).

(2) If $c > 0$, then for every integer $h > c \log c$ and if $c = 0$ for any $h \geq 1$, the ring $R/N_1(R)$ satisfies the identity $S_h[x_1, x_2, \dots, x_h] = 0$; and the principal ideal generated by any finite number of values $S_h[a_{j_1}, \dots, a_{j_h}]$, $i = 1, \dots, t$ is nilpotent of index depending only on t and h .

(3) If R has either no right or left annihilator (e.g. $1 \in R$), then for every integer $h > c^2$, there exists an integer k such that R satisfies all identities I_D corresponding to a Young diagram which contains either the rectangle $T = (k^h)$ or $T' = (h^k)$.

PROOF. The proof of the three parts will follow the idea of section 2 by showing that

$$\frac{1}{n} \log \dim D > \frac{1}{n} \log c_n(R)$$

for certain n 's and appropriate diagrams D , so that $I(R) \supseteq I_D$ and then we apply (3.2)–(3.4).

Let $c_0 > c$ be a number (to be fixed later) and let $\{n_\lambda\}$ be a sequence of integers such that $c_n(R)^{1/n} \leq c_0$, which exist by definition of $c = \lim c_n(R)^{1/n}$.

Given $n \in \{n_\lambda\}$ we choose $k = [n/h]$, i.e. $k \leq n < h(k+1)$. Let D be any Young diagram of content n , which contains the rectangle $T = (k^h)$. Hence, $\dim D \geq \dim T$ (e.g. [1]). We shall choose c_0 so that $\dim D \geq \dim T \geq c_0^n > c_n(R)$, where $n = |D| < (k+1)h$, and then apply (3.2).

Indeed, by Theorem 1

$$\begin{aligned} \frac{1}{n} \log \dim D &\geq \frac{1}{n} \log \dim T = \frac{kh}{n} \left(\frac{1}{kh} \log \dim T \right) \\ &> \frac{kh}{n} (\log h - \varphi(x)) \geq \frac{k}{k+1} (\log h - \varphi(x)) \end{aligned}$$

as $n \rightarrow \infty$, also $x \rightarrow \infty$ and so $k/(k+1) \rightarrow 1$ and $\varphi(x) \rightarrow 0$. Hence the last term tends to $\log h$. Consequently, if we choose any c_0 so that $h > c_0 > c$ we can find a large $n \in \{n_\lambda\}$ and $x = k/h$ so that

$$\frac{1}{n} \log \dim T \geq \frac{k}{k+1} (\log h - \varphi(x)) \geq \log c_0 > \log c_n(R)^{1/n}.$$

Next we apply (3.3) and obtain that R will satisfy the identity $S_h^k[x_1, \dots, x_j]x_{kh+1} \cdots x_n = 0$, from which it follows that R satisfies the identity $S_h[x]^{k+1} = 0$ which proves (1).

To prove (2), we follow the same idea: for a given c_0 we shall choose $n \in \{n_\lambda\}$ so that $c_n(R) < c_0^n$.

But now we choose $k = [n/(h+1)]$, i.e. $k(h+1) \leq n < (k+1)(h+1)$, then for any diagram $D \supseteq T = (k^h)$ of content n , we have as before

$$\frac{1}{n} \log \dim D \geq \frac{kh}{n} \left(\frac{1}{kh} \log \dim T \right) \geq \frac{kh}{(k+1)(h+1)} (\log h - \varphi(x)).$$

If $n \rightarrow \infty$ (in the sequence $\{n_\lambda\}$), then also $x = k/h \rightarrow \infty$ and the last term of the inequality tends to $(h/(h+1))\log h$.

We need the fact that if $h > c + \log c$ then

$$\frac{h}{h+1} \log h > \log c,$$

and indeed for

$$\frac{h}{h+1} \log h - \log c = \frac{1}{h+1} [h(\log h - \log c) - \log c] \geq \frac{1}{h+1} [h - c - \log c] \geq 0,$$

since

$$h(\log h - \log c) = h \int_c^h \frac{dt}{t} \geq h - c \quad \text{for } h > c.$$

If $h > c + \log c$ we can find $c_0 > c$ and $h > c_0 + \log c_0$. Thus, it follows that

$$\frac{h}{h+1} \log h > \log c_0 > \log c.$$

Consequently, as before we can find a sequence $\{n_\lambda\}$ and for $n \in \{n_\lambda\}$, we get the corresponding k , x so that (for appropriate $\varepsilon > 0$)

$$\frac{1}{n} \log \dim D \geq \frac{h}{h+1} \log h - \varepsilon \geq \log c_0 \geq \log c_n(R)^{1/n}.$$

Hence by Proposition 3 it follows that R satisfies

$$S_h[x]y_1 S_h[x]y_2 \cdots S_h[x]y_k = 0$$

which proves that every principal ideal in R generated by an element $S_h[a_1, \dots, a_n]$ is nilpotent of exponent $\leq k$. From this, we easily conclude that also any ideal generated by t elements is nilpotent of exponent $\leq k \cdot t$.

To prove the last part we need a simple lemma:

LEMMA 8. *If R has no right or has no left annihilator, then the sequence $\{c_n(R)\}$ is non-decreasing.*

Indeed, let R have no right annihilator, then if $f[x_1, \dots, x_n]x_{n+1} = 0$ in R also $f[x_1, \dots, x_n] = 0$ is an identity of R . Thus, the mapping $f \rightarrow fx_{n+1}$ induces an injection of $V_n(R)/I_n(R)$ into $V_{n+1}(R)/I_{n+1}(R)$, which proves that $c_n(R) \leq c_{n+1}(R)$.

To prove part (3), we choose c_0 so that $h > c_0^2 > c^2$ and $k = \lfloor n/2h \rfloor$ for $n \in \{n_\lambda\}$, i.e., $2kh \leq n < 2(k+1)h$, or equivalently

$$\frac{1}{2} \geq \frac{kh}{n} > \frac{1}{2} \frac{k}{k+1}.$$

As before, let $D \geq T = (k^h)$ and $|D| = m$, where $n \geq 2kh > m \geq kh$. Then first we have

$$\frac{n}{m} \log c_0 > \frac{n}{m} \left(\frac{1}{n} \log c_n(R) \right) = \frac{1}{m} \log c_n(R) \geq \frac{1}{m} \log c_m(R).$$

On the other hand,

$$\begin{aligned} \frac{1}{m} \log \dim D &\geq \frac{kh}{m} \left(\frac{1}{kh} \log \dim T \right) \geq \frac{n}{m} \cdot \frac{kh}{n} (\log h - \varphi(x)) \\ &\geq \frac{n}{m} \cdot \frac{k}{2(k+1)} (\log h - \varphi(x)). \end{aligned}$$

In order to achieve $\dim D \geq c_m(R)$, we choose $n \in \{n_\lambda\}$ and, respectively, k and x , so that

$$\frac{k}{2(k+1)} (\log h - \varphi(x)) \geq \log c_0,$$

which is possible since the left side tends to $\geq \frac{1}{2} \log h$ which is $\geq \log c_0$. The rest of the proof follows by (3.4). The second half of part (3) is a consequence of the observation that $\dim(k^h) = \dim(h^k)$, and all computations are therefore symmetrical.

6. Width of the hook

Part (3) of the preceding theorem shows that given any integer $m > c^2$, e.g. $m = [c^2] + 1$, then there exists an integer k such that for all diagrams $D \geq (k^m)$ or $D \geq (m^k)$, the identity $I(R)$ contains I_D . Let $\chi_n(R)$ be the co-character of R , i.e., the character of the representation module $V_n/I_n(R)$, and let

$$(6.1) \quad \chi_n(R) = \sum a_D \chi_D \quad \text{where } a_D \neq 0,$$

then the preceding result means that these diagrams D satisfy $D \not\leq (k^m)$ and $D \not\leq (m^k)$. In other words, we can state this fact:

COROLLARY 9. *The diagrams of D of the co-characters of (6.1) lie in a hook H of the shape in Fig. 3, and the width of its legs is $p = [c^2]$ where $c = \lim c_n(R)^{1/n}$.*

Note that the size of the maximal square in H cannot be determined by our method.

We quote an important result of Berele and Regev [2], stating that the coefficients of the co-characters $\{a_D\}$ of (6.1) satisfy $\sum a_D = O(n^s)$ for some

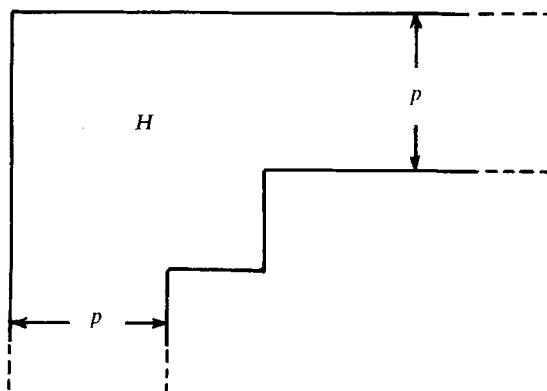


Fig. 3.

integer s , i.e. $\sum a_D$ has polynomial growth. Hence it follows from (6.1) that $c_n(R) = \sum a_D \dim D$ and, therefore,

$$\max \dim D \leq c_n(R) \leq \max \dim D \cdot \sum a_D \leq O(n^s) \cdot \max \dim D$$

which implies

$$(6.2) \quad \max \dim D^{1/n} \leq c_n(R)^{1/n} \leq \max \dim D^{1/n} \left(1 + O\left(\frac{\log n}{n}\right) \right).$$

Since these diagrams lie within the hook H whose width is $[c^2]$, it follows by Theorem 6 that

$$\dim D^{1/n} \leq 2[c^2] + O\left(\frac{\log n}{n}\right),$$

which proves one part of the following result:

COROLLARY 10. *If R has no right or left annihilator, then*

$$c = \underline{\lim} c_n(R)^{1/n} \leq \overline{\lim} c_n(R)^{1/n} \leq 2[\underline{\lim} c_n(R)^{1/n}]^2;$$

and if R satisfies the Cappelli identity, then

$$\overline{\lim} c_n(R)^{1/n} \leq [c^2].$$

Indeed, the first part follows by passing to $\overline{\lim}$ on both sides of (6.2). The second part of the theorem follows from the fact that in this case H can be replaced by a strip and then

$$\dim D^{1/n} \leq [c^2] + O\left(\frac{\log n}{n}\right),$$

and the rest is as in the first part.

An upper bound for $C = \overline{\lim} c_n(R)^{1/n}$ can be given by Latyshev's result to be $(d-1)^2$, since $c_n(R) \leq (d-1)^{2n}$, where d is the minimal degree of the identities of R . A lower bound for $\underline{\lim} c_n(R)^{1/n}$ can be obtained by a recent result of Regev [5]:

For the matrix ring $R = M_s(K)$, $\lim c_n(R)^{1/n} = r^2$, i.e., for these rings, there is always a limit to $c_n(R)^{1/n}$. Using this result we can prove:

THEOREM 10. *For a PI-algebra R let $N_1(R)$ be the sum of nilpotent ideals of R , then $R/N_1(R)$ can be embedded in some matrix ring $M_s(K)$, K commutative, semi-prime, and $c = \lim c_n(R)^{1/n} \geq s^2$.*

PROOF. Let $\bar{R} = R^R$ be the product ring, i.e., the ring of all functions from R to R , and let $L(\bar{R})$ be its lower radical. Consider the sequence of maps $\psi : R \rightarrow \bar{R} \rightarrow \bar{R}/L(\bar{R})$, where ψ is the diagonal embedding of R into \bar{R} followed by the canonical projection. We prove $\text{Ker } \psi = N_1(R)$: indeed, if $a \in \text{Ker } \psi$ then for the function $f \in \bar{R}$, defined by $f(r) = r$ for every $r \in R$, we have that $\bar{a}f \in L(\bar{R})$, where $\bar{a} \in R^R$ is the image of $a \in R$, i.e. $\bar{a}(r) = a$ for all $r \in R$. $L(\bar{R})$ is nil and so $\bar{a}f$ is nilpotent, i.e., there exists m such that $(\bar{a}f)^m = 0$, hence for all $r \in R$, $(\bar{a}f)^m(r) = (ar)^m = 0$. This yields that aR is a nil ideal of bounded index, but R is an algebra of characteristic zero, hence by the Nagata–Higman theorem it is nilpotent, which implies that $a \in N_1(R)$, i.e., $\text{Ker } \psi \subseteq N_1(R)$.

Conversely, if $a \in N_1(R)$, then a generates a nilpotent ideal aR of index m , then $\bar{a}\bar{R}$ is also nilpotent, since

$$(\bar{a}f_1 \cdots \bar{a}f_m)(r) = af_1(r)af_2(r) \cdots af_m(r) \in (aR)^m = 0.$$

Thus $a \in \text{Ker } \psi$, and so $N_1(R) \subseteq \text{Ker } \psi$.

Now $\bar{R}/L(\bar{R})$ is a semi-prime PI-ring, and as such it is embeddable in some matrix ring $M_s(K)$, K commutative and semi-prime and which satisfies the same identities. Hence $c_n(\bar{R}/L(\bar{R})) = c_n(M_s(K)) \cong s^{2n}$. On the other hand, the identities of \bar{R} and R are the same so that $c_n(R) = c_n(\bar{R})$, and clearly $c_n(\bar{R}) \geq c_n(\bar{R}/L(\bar{R})) \cong s^{2n}$, so that $\underline{\lim} c_n(R)^{1/n} \geq s^2$. q.e.d.

This number s of Theorem 10 can also be characterised in a different way.

THEOREM 11. *The integer s of Theorem 10 is the maximal order of matrix ring $M_s(Q)$ which satisfies all identities of R , i.e., $I(M_s(Q)) \supseteq I(R)$.*

PROOF. We can replace R by the universal ring $F\langle x \rangle / I(R)$, where $F\langle x \rangle$ is the free ring in an infinite number of indeterminates, since the identities of R and of

the universal ring coincide. For the universal ring we have $N_1(R) = I(M_s(Q))/I(R)$. Indeed, $N_1(R)$ is the lower radical $L(R)$ of R , since $L(R) \supseteq N_1(R)$ and if $f(x) \in L(R)$, then $(f[x]x_{n+1})^m = 0$ in R for some m and x_{n+1} which is not in the indeterminates of $f[x]$. In other words this means that $f[x]R$ is a nil ideal of bounded index, and since the characteristic is zero, $f[x] \in N_1(R)$. Now, for the universal ring $L(R)$ is the identity of the matrix ring, i.e. $L(R) = I(M_t(Q))/I(R)$, and t is the maximal integer for which $I(M_t(Q)) \supseteq I(R)$. One can now easily verify that $t = s$, the integer of Theorem 10.

COROLLARY 12. *If $\lim c_n(R)^{1/n} < 4$, then $R/N_1(R)$ is commutative, and if $R/N_1(R)$ is not commutative, then $\lim c_n(R)^{1/n} \geq 4$.*

Indeed, the first part follows since $s^2 < 4$ implies $s = 1$. The second part follows since then $R/L(R)$ satisfies the same identities of a matrix ring $M_t(K)$, $t \geq 2$, and so $c_n(R)^{1/n} \geq c_n(R/L(R))^{1/n} \rightarrow t^2$. Hence $\lim c_n(R)^{1/n} \geq t^2 \geq 4$.

7. Lim sup of the sequence $\{c_n(R)^{1/n}\}$

Let $C = \overline{\lim} c_n(R)^{1/n}$; we determine a lower bound for the ultimate width of the hook in which the diagrams D of the co-characters $\chi_n(R)$ of (6.1) lie in terms of C if $C > 0$. More precisely:

THEOREM 13. *For any integer N , there exist diagrams D of the co-character such that D contains either a hook T of width k and h , or a strip $T = (a^h)$ or (h^a) such that $|T| > N$ and $h + k \geq C$, and $h \geq C$ for the case of a strip T (Fig. 4).*

We need a few preliminary results.

LEMMA 13'. *Let D be a Young diagram of content n , divided into a union of diagrams D_i , $|D_i| = d_i$, $i = 0, 1, 2, \dots, r$; then*

$$\dim D \leq \binom{n}{d_0, d_1, \dots, d_r} \dim D_0 \dim D_1 \cdots \dim D_r.$$

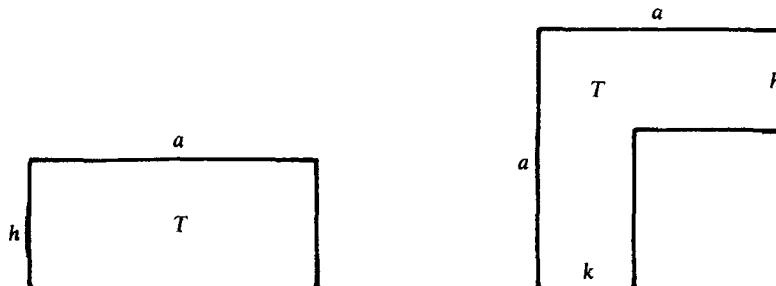


Fig. 4.

The proof follows the same method as that of (4.9):

$$\dim D = \frac{n!}{\prod h_{ij}} = \frac{n!}{d_0! \cdots d_r!} \prod_{(\rho)} \frac{d_\rho!}{h_{ij}^{(\rho)}} \prod_\rho \prod_{(\rho)} \frac{h_{ij}^{(\rho)}}{h_{ij}}$$

where $\prod_{(\rho)}$ is the product ranging over the subdiagram D_ρ , with hook numbers $h_{ij}^{(\rho)}$. Clearly $h_{ij}^{(\rho)} \leq h_{ij}$, so that the last factor is ≤ 1 , which proves the lemma.

We are going to use this lemma in a special case where all D_i , except D_0 , are either rows or columns of length d_i and width 1 (Fig. 5). In this case we show:

COROLLARY 13''. $\dim D \leq (n/(h+k))^{d_0} (h+k)^n$.

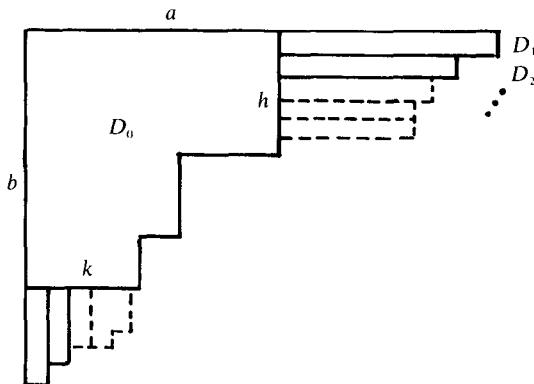


Fig. 5.

Indeed, by the preceding lemma we have, in our case, $\dim D_i = 1$ for $i > 1$. Also $\dim D_0 \leq d_0!$ since $|D_0| = d_0$. Hence it follows by Lemma 13' that

$$\dim D \leq \binom{n}{d_0, d_1, \dots, d_{h+k}} d_0! = \binom{n}{d_0} d_0! \binom{n-d_0}{d_1, d_2, \dots, d_r} \leq n^{d_0} (h+k)^{n-d_0}.$$

We turn to the proof of the theorem. By the statement preceding (6.2) it follows that there exist constants K and s so that $c_n(R) < Kn^s \dim D$ for some diagram D which lies in the co-character $\chi_n(R)$. Next, the definition of C implies that given $\varepsilon > 0$ there exists an infinite sequence $\{n_\lambda\}$ such that for $n \in \{n_\lambda\}$, $c_n(R) > (C - \varepsilon/2)^n$.

Using the last corollary we obtain

$$(7.1) \quad (C - \varepsilon/2)^n \leq c_n(R) \leq Kn^s n^{d_0} (h+k)^n.$$

The procedure of choosing the diagrams D is as follows:

Given N and $\varepsilon > 0$, find a sequence $\{n_\lambda\}$ such that for all $n \in \{n_\lambda\}$, $c_n(R) \geq (C - \varepsilon/2)^n$. For each $n \in \{n_\lambda\}$ choose a diagram D such that $c_n(R) \leq Kn^s \dim D$. Now we consider two cases.

Case 1. These diagrams D have unbounded height and width. In this case we choose integer $a = b$ in Fig. 5, which will be chosen later depending on N and C , and R . To each D we cut the diagram at height and width a , and set D_0 to be the remaining squares; then $d_0 = |D_0| \leq a^2$. Next we choose $n \in \{n_\lambda\}$ large enough such that

$$h + k > (C - \varepsilon/2)(Kn^{s+a^2})^{-1/n} \geq C - \varepsilon$$

which is possible for large n in the sequence $\{n_\lambda\}$, since by the lemma

$$(C - \varepsilon/2)^n \leq Kn^{s+d_0}(h + k)^n \leq Kn^{s+a^2}(h + k)^n.$$

If we choose $\varepsilon > 0$ small enough so that $C - \varepsilon > [C]$ if $C \neq [C]$, we get $h + k \geq C$ since $h + k$ is an integer; and if C is an integer and $C - \varepsilon > C - 1$, we also have $h + k \geq C$.

Finally, if T is the hook in D based on k and h we get

$$|T| = (k + h)a - kh \geq (k + h)a - p^2$$

where p is an upper bound for the hook of shape H (Fig. 3) in which all these diagrams D lie. Hence, if we choose $a > (N + p^2)/C$ we have $|T| > N$ as required.

Case 2. The chosen diagrams have either a bounded height or width (say of bounded height). Then we choose b in Fig. 5 to be the maximum height. We repeat the preceding procedure with $k = 0$, and take the leg of D cut at distance a (Fig. 5); then $d_0 = |D| \leq ab$. Also, choose n large enough so that

$$h > (C - \varepsilon/2)(Kn^s n^{ab})^{-1/n} \geq C - \varepsilon,$$

hence, as before, $h \geq C$.

Finally, in this case we obtain the strip T of height h and length a , so that $|T| \geq ha > N$ if we choose $a > N/C$.

8. Appendix 1. An asymptotic formula

The lower bound of $\dim(k^h)$ given in section 1 is not far from the asymptotic formula, which proves that we cannot expect that this computational method of finding h , k , so that $S_h^k[x] = 0$ holds, will yield any result for $h < 1 + (d - 1)^2$, although we know it holds for $h = [d/2]$.

THEOREM 14. $\dim[k^h] = C(k+h)^{1/12}n^{5/12}(e^{-\varphi(x)}h)^n(1+O(1/n)); \quad x = k/h,$
 $n = kh,$ where $\varphi(x)$ is the function in (2.4), and some constant $C = C_0(1+O(1/h)).$

We use the Stirling formula

$$(8.1) \quad \sum_{\nu=1}^n \log \nu = n(\log n - 1) + \frac{1}{2} \log n + O(1).$$

Following the formulas of (2.2) we have

$$\begin{aligned} \sum \log(s+t-1) &= \sum_{t=1}^k \sum_{s=1}^h \log(s+t-1) \\ &= \sum_{\nu=1}^{k+h} (k+h-\nu) \log \nu - \sum_{\nu=1}^k (k-\nu) \log \nu - \sum_{\nu=1}^h (l-\nu) \log \nu \\ &= g(k+h) - g(k) - g(h) \end{aligned}$$

where $g(m) = \sum_{\nu=1}^m (\mu - \nu) \log \nu.$ The last formula is obtained by setting $s+t-1 = \nu$ and summing in three areas, $\nu < k$ (say $k \geq h$), $k \geq \nu > h$, and $\nu \leq h.$ We then get

$$\begin{aligned} \sum_{t=1}^k \sum_{s=1}^h &= \sum_{\nu=k+1}^{k+h-1} (k+h-\nu) \log \nu + \sum_{\nu=h+1}^k h \log \nu + \sum_{\nu=1}^h \nu \log \nu \\ &= \sum_{\nu=1}^{k+h} (k+h-\nu) \log \nu + \sum_{\nu=h+1}^k \log \nu + \sum_{\nu=1}^h \nu \log \nu \end{aligned}$$

and the rest is immediate (when $h = k$ the empty sum is taken to be zero).

Next we obtain an asymptotic formula for $g(m).$ First, we need the well known formula

$$\begin{aligned} m \sum_{\nu=1}^m \log \nu &= m[m(\log m - 1) + \frac{1}{2} \log m + C + O(1/m)] \\ &= m^2 \log m - m^2 + \frac{1}{2} m \log m + Cm + O(1). \end{aligned}$$

Then

$$\begin{aligned} \sum_{\nu=1}^m \nu \log \nu &= \frac{1}{2} \sum_{\nu=1}^m [\nu^2 - (\nu-1)^2 + 1] \log \nu \\ &= \frac{1}{2} \left[\sum_{\nu=1}^m \nu^2 \log \nu - \sum_{\nu=1}^{m-1} \nu^2 \log(\nu+1) - \sum_{\nu=1}^m \log \nu \right] \\ &= \frac{m^2}{2} \log m - \frac{1}{2} \sum_{\nu=1}^{m-1} \nu^2 \log \frac{\nu+1}{\nu} + \frac{1}{2} \sum_{\nu=1}^m \log \nu. \end{aligned}$$

Note that

$$\log \frac{\nu+1}{\nu} = \frac{1}{\nu} - \frac{1}{2\nu^2} + \frac{1}{3\nu^3} - \frac{\theta(\nu)}{\nu^4}, \quad 0 \leq \theta < 1.$$

Hence

$$\begin{aligned} \sum_{\nu=1}^m \nu \log \nu &= \frac{m^2}{2} \log m - \frac{m(m-1)}{4} + \frac{m-1}{4} - \frac{1}{6}[\log m + C + O(1/m)] + O(1) \\ &\quad + \frac{1}{2}[m(\log m - 1) + \frac{1}{2}\log m + O(1)] \\ &= \frac{m^2}{2} \log m - \frac{m^2}{4} + \frac{m}{2} + \frac{1}{2}m \log m + \frac{1}{12} \log m + O(1) \end{aligned}$$

where C is Euler's constant. Hence

$$g(m) = \sum_{\nu=1}^m (m-\nu) \log \nu = \frac{m^2}{2} \log m - \frac{3}{4}m^2 - \frac{1}{12} \log m + Am + O(1)$$

for some constant A .

Finally, by (8.1) for $n = kh$, $x = k/h$, we obtain that

$$\begin{aligned} \log \dim(k^h) &= [n(\log n - 1) + \frac{1}{2}\log n + O(1)] \\ &\quad - [\frac{1}{2}(k+h)^2 \log(k+h) - \frac{3}{4}(k+h)^2 - \frac{1}{12} \log(k+h) - A(k+h)] \\ &\quad + [\frac{1}{2}k^2 \log k - \frac{3}{4}k^2 - \frac{1}{12} \log k + Ak] \\ &\quad + [\frac{1}{2}h^2 \log h - \frac{3}{4}h^2 - \frac{1}{12} \log h + Ah] + O(1) \\ &= n[\log h - \varphi(x)] + \frac{1}{2}\log n + \frac{1}{12} \log \left(\frac{k+h}{kh}\right) + O(1) \end{aligned}$$

which proves that, for $n = kh$,

$$\dim(k^h) = (e^{-\varphi(x)}h)^n n^{5/12} (k+h)^{1/12} g(n, h).$$

If we use one additional term in the approximation of $\sum \log \nu$ and $\sum \nu \log \nu$, we can show that $g(n, h) = C(1 + O(1/n))$ for some constant $C = C(h)$, which is of the form $C_0(1 + O(1/h))$.

REFERENCES

1. S. A. Amitsur and A. Regev, *PI algebras and their cocharacters*, J. Algebra **78** (1982), 248-254.
2. A. Berele and A. Regev, *Applications of hook Young diagrams to PI-algebras*, J. Algebra **82** (1983), 559-567.

3. V. Drensky, *Representation of the symmetric group and varieties of linear algebras*, Mat. Sb. **115** (1981), 98–115.
4. A. Regev, *The representation of S_n and explicit identities of PI algebras*, J. Algebra **51** (1978), 25–40.
5. A. Regev, *Codimensions and trace codimensions of matrices are asymptotically equal*, Isr. J. Math., to appear.

INSTITUTE OF MATHEMATICS
THE HEBREW UNIVERSITY OF JERUSALEM
JERUSALEM, ISRAEL