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OF PI-ALGEBRAS
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ABSTRACT

Bounds and asymptotic formulas are given for the size of the irreducible
representations of the symmetric groups. These are apphed to obtain informa-
tion on the identities and codimension sequence c,(R) of a Pl-algebra R of
characteristic zero, e.g., the “ultimate” width of the hook in which the diagrams
of the cocharacters of R lies is =(limc,(R)'"), and limc,(R)"" =
2(lim ¢, (R)"" ¥ for rings with no right (or left) total annihilators.

1. Introduction

The relation between the representations of the symmetric group and the
polynomial identities I(R) of an algebra R of characteristic zero, has been
developed by Regev in a sequence of papers. The basic idea is to consider the set
of multilinear homogeneous polynomials V, in n non-commutative indeter-
minates x,,*--,X. as an S,-module, isomorphic with FS,, by setting
of[x1,* -+, xa] = f[Xoay, * * *» Xwm), the polynomials of V, which are identities of
R,ie. I,(R)=I(R)N V, is a left S,-module, and by identifying V, with the
group ring FS,, I, (R) is a left ideal in FS,. The n-th cocharacter x,(R) is the
character of the quotient module V, /I (R), and its dimension ¢, (R) is the n-th
codimension of R. V,/I,(R) is a direct sum of irreducible left ideals I, and
¢ (R)=2apdim D. In particular, if for some Young diagram D’, dim D' >
¢. (R), then the two-sided ideal Ip. is included in I, (R). Regev in [4] has shown
that the classical result, that R satisfies a power of standard polynomial
Su[x1,- -+, xx]* =0, can be shown with h =(d —1)*+1, and k ~ h* where d is
the degree of a minimal identity of R. In [1], Regev and the author have shown
that the diagrams D of the cocharacter lie in a hook of width ~ e(d —1)".

The present paper uses the methods developed by Regev and in [1], to obtain
more refined results in this direction.
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First we obtain better bounds for dim(k") of a Young diagram of rectangles
k x h, and of hooks shown in Fig. 2. These bounds are used to show, e.g., that
Sk[x]=0 will hold for k ~ h*logh which is better than the bound of [4].

Next we consider limc,(R)" = ¢, and prove that ¢ can replace Latyshef
bound (d —1)° which was used in [1] and [4], but then without giving precise
bounds, but rather results of the form, e.g.: (1) for each h > ¢ there exists k such
that R satisfies S, [x]* = 0; (2) the diagrams D of the cocharacter lie in a hook of
the shape in Fig. 3 (Corollary 9) with ‘ultimate’ width=c’. An interesting
corollary is that lim ¢, (R)"" and lim ¢, (R)"" are not independent. For matrix
rings and for the exterior algebra actually lim ¢, (R )" exists (Regev [5], Drensky
[3]). In the general case we could only prove that lim ¢, (R)"" = 2(lim ¢, (R)"" Y.
A lower bound for ¢ is s°, where s is a size of matrices in which R/N,(R) can be
embedded, where N,(R) is the sum of all nilpotent ideals of R.

2. Dimensions of the representations of S.

All algebras and representations in this paper are over fields of characteristic
zero. Let D be a Young diagram of content n; dim D will denote the dimension
of the corresponding representation of the symmetric group S..

To compute a lower bound for dim D we use the hook formula

n!
[T

where h; is the hook number, that is, the number of squares in the hook through
the (i, j) square. Let s, t denote the number of squares of the corresponding legs
(Fig. 1); then h; = s +t — 1. Hence we obtain from (2.1)

2.1) dim D =

logdim D = > logv — >, log(s +t—1)
v=1

22)
= n((logn)—1)— JJ log*(s +t — 1)dsdt

Fig. 1.
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where log" n =logn for n = 1 and zero elsewhere, and the integral is taken over
the area of D with each square a unit square.

Let T = (k") be a rectangle of h rows each of k squares. For T it is easy to
obtain an upper bound for the integral:

k rh
f[ log*(s +y — 1)dsdt éf J’ log*(s + t)dsdt

k
= f [(s +t)(log"(s + 1) — 1)]ods
0
=13k + h)log(k + h)—3k*logk —zh’logh —3ikh
which is obtained by using the equation [ x(logx — 1)dx =3x’(logx —3)+ C.
Let x = k/h, and divide (2.2) by n = kh; using the inequality 2}_,logv =

n(logn —1):

L i dio 7= lon xh® — 1 — b (14 x 7 x 1,3
nlogdlmTzlogxh 1 2x(1+x)log(l-kx)h+zlogxh+2xlogh+2

@3) =logh —¢(x)
where

(p(x)=lT+xe log(1+x)— (l +%> -logx —3
(2.4) = —2-1; [F(x +1)— F(x)— F'(x)]

p— 1 ' "
—2xjo (1= )F"(x + t)dt
with F(x) = x’log x. Thus

¢(x)=2—1x-£ (1—1)2log(x + t)+3)dt

(2.5) 1
= (log(x +1)+32).

A simple bound for ¢(x)is A(logx)/x, where A is a constant whose value can
be chosen suitably, if the values of x are not too near to 1. It follows easily by
computation that ¢(x) = (logx)/x for x = 4.8, and, e.g., ¢(X)=2(logx)/x for
x =1.75. In fact, for £ >0 there exists x, so that
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e(x)=G+ 19)1—054r for x = x,,

since the integral of (2.5) is Zlogx.
Summarizing, we obtain:

THeOREM 1. If T =(k"), then dim T = (e **’h)**, x = k/h and ¢(x)—0 as
x — . Furthermore, for x 24.8, dim T = (x "*h)".

An asymptotic formula and bounds for some other diagrams will be given
later.

The next lemma is readily proved by a straightforward computation using the
inequality log(l +x)<x for x >0, or by using Newton’s method to obtain a
bound for the solution of the equation x/M —logx =0, M > 0.

LemMA 2. If I<M=e and x> MlogM, or if M > e and

loglogM)
X >M10gM<l+logM—I
then (logx)/x <1/M.

3. First applications to P1

Let V, be the linear space of all n-homogeneous multilinear polynomials in n
non-commutative indeterminates, and consider it as the S,-left module (S, the
permutation group) given by of[x., -, x.] = flXo), * * ' Xom)].

Let I(R) be the set of all identities of an algebra R over a field of
characteristic zero. The sequence of codimensions of R is defined by Regev:
¢. (R)=dim(V,/IL.(R)), where I,(R)= V, N I(R).

First we follow Regev’s method of (4], but we use our bounds of dim D to
obtain a more refined result than those of [4]. We begin by quoting some of the
basic facts of [1] and [4]:

Given a Young diagram of content |D|= n, let Ip denote the ideal corres-
ponding to D in the group algebra FS,, and we identify FS, with V, by

identifying = a,0 with 2 a,x,)* * * Xo(n)- A basic lemma of [4] which is the main
tool is: '
(3.1) If ¢. (R)<dim D then Ip C L. (R).

This has the corollary (Regev [4]):
If c.(R)=dim T, T = (k"), then R satisfies the identity S, [x1,- -, %] =0,

3.2) where S, [x] is the standard polynomial.
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And by [1]:
If I(R)D Ip-foraliD'z D,and |D'l=n+m
then R satisfies all identities of the form
(3.3) FHXT= D Qo XoqMi Yo+« My, XowM,
forall f = 2 a,0 € Ip, and all monomials m; in 1, X401, * *, Xpsm-

In particular we obtain:

ProrosiTioN 3. If I(R)2D Ip for all Young diagrams D containing the rec-
tangle T = (k") where |D|= k(h + 1), then the principle ideal generated by any
element S.[a., -, a.], a € R is nilpotent of index = k. Hence, if N(R) is the
sum of all nilpotent ideals of R then R/N(R) satisfies the identity S,[x]=0.

Indeed, it follows from (3.3) and (3.2) that R satisfies the identity (with k
factors)

Sk [xn, o ',Xh])’ugh [xl, . ',xh]y:' <+ Sy [Xh t ',xh])’h =),

and the rest follows immediately.
We shall also need the following result of [1]:

If for all diagrams D' = D, 2| D |>|D'| = | D | the identities I(R) D Ip-,
(3.4) thenforall D'z D, I(R)D Ip-.

Our first result is a refinement of a result of Regev [4] who has proved the next
theorem for k ~ h™:

THEOREM 4. (i) Let R be a PI algebra satisfying an identity of degree d = 3,
then for every h =1+ (d —1)’ and

, loglo h)
k>h logh<1+—g—g—logh_1 :
the ring R satisfies the identities Si[x]=0 and Si[x]" =0.
(ii) R satisfies also the identity S,[x]" =0, for h ={4e”"*(d — 1)’] + 1.

ProOF. We follow Regev’s method of [4] using our bounds, to show that for
k, h of our theorem we have dim T > c,(R) and apply (3.2).

Indeed, assume first that x = k/h 4.9, Using the bound of Latyshef that
c.(R)=(d —1)", we have to show, by Theorem 1, that

%logdim T>logh—o¢(x)Zlogh —lﬁf—leog(d -1y
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or equivalently that
h

log x
<log TE

If h=21+(d-1), then log(h/(d —1)’)=1/h hence it suffices to show that
(log x)/x = 1/h. We can apply Lemma 2, since h 21+ (d —1¥=5>e ford =3,

and obtain the first part of our theorem. Note that

loglogh)
<1+10 3 =5

k
x=+>hlogh oh

h

and so the method is admissible. For d =2 see Remark 2 below.

If we wish to obtain a result for lower x, e.g. x =1, we have to

REMARK 1.
use the original form of ¢ (x)in (2.4), e.g., ¢ (1) = 2log2 —3. Hence for x = 1,

% logdim T >logh — ¢(1) = log(d - 1)
which yields h = 4e™"*(d — 1)°, =2.42(d — 1), and proves the second part of the

theorem.
If R satisfies an identity of degree d =2, then it evidently

REMARK 2.
satisfies an identity of degree 3. But a simpler method follows by noting that then
R satisfies either S, = x1x; — x:x, =0 or x,x,+ x,x, =0 (or both) and hence R

will always satisfy S3[x,, x,] = 0.

4. A bound for dim D,
SA), A =A== A 21 be a partition of n=

Let A =(A, Ay,
Ai+---+A,, and let D, be its corresponding Young diagram.

Two cases will be considered in this section. (i) The number of parts r is small

relative to n; (ii) D, lies in a hook of width h.
To this end we use the Frobenius-Young formula for dim D,

1T =X)
4.1 dimD, =n! S——
@.1) ' M Aol A

where X, = A, +j—1; we put it in an equivalent form:

HHW—MH~0~

. n! n
dim D, = —"— ( .)€ and C=cu)
)\1. Ar- HH (A, +]—l) AlaAZs ,Ar

4.2)
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Since

I j—1
' j- i

= a+n=TTo+i-i,

i i=1

>r|\>—>

both products of the numerator and denominator of the constant C range over
-TIZ1; and hence C =1. On the other hand, since A, = A; =n,

(43) czMlligzm+n”

where p =2(j —i)=r(r —1)/2. (By using the condition that A; =1, one can
obtain that C = (n/n +1).)

Next we look for an asymptotic formula for (,,.".,), and to this end we use the
classical integral approximation for n! and A;!, that is,

IOg()\,, § ) Elogv—EZlogv

i=1 v=1

(4.4) Zn(ogn—1)— > A(logAh —1)—1 > log A,
=

=DYWY log———logn

since X A; =n.
Combining the previous inequalities we finally get

(4.5) %logdim D, = 2 log——;ll—log P(n)

where P(n)is a polynomial of n of degree = r’. As we shall be mainly interested
in the case n — « and r bounded, a slightly more detailed analysis of (4.2), (4.3)
and (4.4) will yield

(4.6) L jogdim D, = o (loan)
n g { n

This is the first step in proving the following theorem:

Treorem 5. If {L {D.} ranges over a sequence of partitions (A)= (A, -+, Ay) of
n of length r, and lim(\,/n)=1/c, then ¢ Zr. If ¢ = r then limdim D}" =1, ie.,

D, ~ r" asymptotically; and if ¢ > r then limdim D}"=p <r.

Proor. Since 2 x; = n, and A, is the minimal A;, it follows that n = A,r. Hence
A/n =1/r and, therefore, c 2 r.
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We set x; = A;/n and consider the term 2(A;/n)log(n/A;) of (4.6) as a function
F(x)=Z2i-1x:log(l/x;) defined in a domain O0<b=x=---sx=1,
X1+ x4+ --+x =a and in our domain a =1, b = 1/n. Clearly F(x) is defined
and obtain a maximum (and minimum) in this domain.

ProrosITION 5.  F(x) obtains its maximal value a -log(r/a), only once in the
above domain, and this at the point x;, = afr, i =1,---,r.

Proor. Given a point (x)=(x,," -, x,), and suppose x; < x; for some i# j,
then at a point (x") = (x.), xi=x; + 8, x; = x; — & for small & still in this domain
(and with a possible change of the indices of the x)) we have

(4.7) F(x)= F(x)+8log 2+ O(5%)

and so for small 6 >0, F(x')> F(x)> F(x) and for § <0 (and x; — 8§ = b),
F(x')< F(x). This implies that the maximum is obtained only if all x, are equal,
i.e., at the point (a/r,--,a/r), and there

r

=200 L
F—rrloga.

Hence,

CoroLLARY 5". If {D.} ranges over a sequence of Young diagrams of r rows
with length of rows A; = n/ci + o(n), thenr=c¢,=---=c¢, =nand 2(1/c;) =1,

=1

1 . A n logn o1
N, = log dim D, = > Py logxi—+ O(—f—) = Zalogc; +o(1).
Next we consider diagrams D, which lie in a hook H of the shape given in Fig.

2, which is a hook with a middle rectangle of some size. We divide this diagram
into three parts: D, the part of D, which is the horizontal leg; D,, the part in the

1 D, |
[}
L]

D, ;

Fig. 2.
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vertical leg; and D,, within the middle rectangle. Let |D,|=u, [D;|=v and
[Do|=w so n=u+v+w. From the hook formula we obtain

n! _ n! . u! ' v! . w! .Hhilimhi’il;[hi;
Tptwl
I, ulvtw! Hh;j l:Ih.-; l(—)[h.’,» [Th

where hj; denotes the hook number of the corresponding subdiagram D, D,,
Dy; 11; is the product of the corresponding diagram D;, and Il is the product for
D,. Now for D,, clearly h; = h; and we have the same hook number, and so they
cancel each other in the last factor of (4.8); and similarly for the diagram D,. For
the middle part D, in each square we have for each quotient

4.8)  dimD, =

1

iv
v

S |-

h,‘,‘

w

since h; = n. Hence, the last factor of (4.8) is between 1 and n™", where

w = lD()l .
Thus (4.8) yields
(u”)mmmmmammagmma
(4.9)

Y

w% ”)dmmmmmmmm.
u,u,w

We use this inequality to prove:

THEOREM 6. Let A; be the length of the rows of D, (horizontal part of D,) and
Wi the length of the columns of D, (vertical part of D)), then

LiogdimD, =S Mlopg 4 S Bijog 1 (MM)
(4.10) " log dim D, Z " log X + 2 " log " +0 paay
PrOOF. From (4.6) we have
() lmwmm=zﬁmﬂ+o@ﬂ>
u u Ai u /’

and if we consider the dual diagram of D, (i.e. the rows turned into columns)
which have the same dimension, we get

LioedimD, =S Hiop 2 Mﬁ)
) lengsz Evlogm+0< mel
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Finally dim D, is bounded by w! as a diagram corresponding to the symmetric
group S..

For the binomial factor (...) of (4.9) we use the asymptotic formula of the
factorial, namely

L - - 1— 1
log<u,v’w> logn!—logu!—logv!—logw!
=n(logn —1)—u(logu ~1)~v(logv —1)—w(logw — 1)+ O(logn)
since u,v and w <n. Thus using n =u +v +w we get
=ulog§+vlog§+0(logn)

noting that in the shape H, w is a bounded number, even if we vary D, so that
n— . This proves that

1 no\_H R Y0 logn)
0 log( )~nlogu+nlogv+0< .

n u, v, w n

If we put the values of (1), (2), (0) in (4.9) we get

llogdimD)‘=Elog—r£+ﬂ-llogdimD,+—lilogﬁJr—v-llogdiszvLO(lﬁgj—l)
n n °u nu n °v nv n

=££&123ﬂ£><£@)
n(logu+zulogAi>+n<logv+2vlOgu,- +0 "
since

L) (%ﬂ) = O(l%%—u) = O(l—oﬁﬂ> etc.

n

Now Z A = u, 2 u; = v. Hence we have

L ae D 25 S A (100 100 B) 4+ 25 B (jog L 2) (logn>
nlogdlmDA— 2u<10g)\,~+logu)+n20(IOg;Lj+logv + 0 ”

n
=S Mg P S Bipe 1y o108 n_)
—Enlog/\i+zn lOgM;+O( -

which proves (4.10).

CoROLLARY 6. If h, k are the respective width of the horizontal and vertical
legs of H (Fig. 2), then

dim DY = (h + k) (1 +0 (1%%1‘)) ,
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and if v =|D,| = o(n), the number of squares in the vertical leg, then dim D" =
h(1+0(1)).

PROOF. Let hy, ko be the respective number of rows and column of D,, then it
follows from (4.10), from the fact that £ A; = u, 2 u; = v, and by Proposition 5,
that

1 oedi u LAY n logn)
@.11) nlogd:mDA:nlog(huu>+nlog<k“v>+0<n :

Since log x is a convex function, we have

a b ax + by
a+blogx+a+blogy§log a+b

for a, b and x, y positive. In our case we get for a = u/n, b = v/n, and from the
fact u + v + O(1) = n, that

Ao+ ko)
u-+tv

L logdim D, = ut z)log( n =log(ho+ ko) + O (—L)
n n n
which proves the first part of Corollary 6, since hy< h, ko= k.
The second part follows since v =o0(n), u =n+o(n), and as x logx —0
when x — 0 the second factor of (4.11) is o(1).

5. The codimension series

Given the codimension series {c.(R)} of a Pl-ring R, we consider ¢ =
lim ¢, (R)"". It seems probable that the {c,(R)""} has a limit, and in one case,
Regev [5] has recently proved that for the matrix ring M,(K)=R then
limc,(R)"" =r® It follows also from [3] that this limit exists for the exterior
algebra. For general rings we can only show that ¢ = lim ¢, (R)"" can replace the
Latyshef bound (d —1)° (which is = ¢) in the main theorem of {4]; namely,

THEOREM 7. (1) For every integer h > c, there exists k such that R satisfies the
identity Sw[x1," -, x.]* =0 (and Si=0).

(2) If ¢ >0, then for every integer h > clogc and if ¢ =0 for any h = 1, the
ring R/N(R) satisfies the identity S,[x:, X2, -, x:] =0; and the principal ideal
generated by any finite number of values Si[a;, - - -, an], i =1, - -, t is nilpotent of
index depending only on t and h.

(3) If R has either no right or left annihilator (e.g. 1 € R), then for every integer
h > c’, there exists an integer k such that R satisfies all identities I, corresponding
to a Young diagram which contains either the rectangle T = (k") or T' = (h").
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Proor. The proof of the three parts will follow the idea of section 2 by
showing that

1 Iogdme >— 1 logc,.(R)

for certain n’s and appropriate diagrams D, so that I(R) D Ip and then we apply
(3.2)-(3.4).

Let ¢, > ¢ be a number (to be fixed later) and let {n, } be a sequence of integers
such that ¢, (R)"" = ¢,, which exist by definition of ¢ = lim ¢, (R)"".

Given n €{n,} we choose k =[n/h}], i.e. k=n<h(k+1). Let D be any
Young diagram of content n, which contains the rectangle T = (k"). Hence,
dimD =zdim T (e.g. [1]). We shall choose ¢y so that dimD =dim Tz ¢5>
¢.(R), where n =|D| < (k +1)h, and then apply (3.2).

Indeed, by Theorem 1

logdlmD =1 logdlm T—M(klh

logdim T)

> 5 10g h — o (1)) 2 15~ (l0g h ~ p(x)

as n— o, also x = > and so k/(k +1)—1 and ¢(x)— 0. Hence the last term
tends to log h. Consequently, if we choose any ¢, so that h > ¢, > ¢ we can find a
large n €{n,} and x = k/h so that

%logdim Tz (logh — ¢(x)) = logco>logc.(R)"".

k+1

Next we apply (3.3) and obtain that R will satisfy the identity
Sk[x1,- "+, X | Xener - - X, =0, from which it follows that R satisfies the identity
Sk[x]“"' =0 which proves (1).

To prove (2), we follow the same jdea: for a given ¢, we shall choose n € {n,}
so that ¢, (R) < cq.

But now we choose k =[n/(h +1)}, i.e. k(h+1)=n <(k +1)(h +1), then
for any diagram D = T = (k") of content n, we have as before

1 kh{1 kh
logd1mD> (kh logdim T)_(k+1)(h+l)(10gh @ (x)).
If n —  (in the sequence {n,}), then also x = k/h —> and the last term of the

inequality tends to (h/(h + 1))log h.
We need the fact that if h > ¢ +logc then
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I logh > logc,
and indeed for

logh—logc—-ﬁl—[h(logh—logc) logc]z —logc]=0,

h
h+1 h+1[h
since

o, [(tdt
h(logh —logc)=h Tzh—c for h > c.

If h >c +logc we can find ¢y,>c¢ and h > cy+1logco. Thus, it follows that

h
P logh >logc,>logec.

Consequently, as before we can find a sequence {n,} and for n € {n,}, we get the
corresponding k, x so that (for appropriate & >0)

%log dim D = ——logh — ¢ Zlog ey Zlog cs (R)".

h+

Hence by Proposition 3 it follows that R satisfies
Sulx]yiSulx]y2 - Sulxlyc =0

which proves that every principal ideal in R generated by an element
Sn[ai, - - -, ax] is nilpotent of exponent = k. From this, we easily conclude that
also any ideal generated by ¢ elements is nilpotent of exponent =k -1

To prove the last part we need a simple lemma:

LeEMMA 8. If R has no right or has no left annihilator, then the sequence
{c.(R)} is non-decreasing.

Indeed, let R have no right annihilator, then if f[xy,* -, X, ]x.+1 =0 in R also
flx1,- -+, %] =0 is an identity of R. Thus, the mapping f— fx.., induces an
injection of V,(R)/I,(R) into V,.(R)/L.i(R), which proves that ¢.(R)=
C.+1(R).

To prove part (3), we choose ¢, so that h>c3>c¢” and k =|n/2h] for
n €{n}, i.e., 2kh = n <2(k + 1)h, or equivalently

kh>

n

_k_
k+1°

IV

DI =

1
2
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As before, let D= T = (k") and | D | = m, where n =Z2kh > m = kh. Then first
we have

1 1 1
——logc(, m( logc,,(R))———logc,,(R)é-r;logcm(R).
On the other hand,

——logdlmD >’—‘f’(kh log dim T)>i-»(logh ¢(x))

= ey lorh — o)

In order to achieve dim D = ¢, (R), we choose n € {n,} and, respectively, k
and x, so that

k
UES)) (logh — ¢(x)) = log co,

which is possible since the left side tends to =3logh which is = log co. The rest
of the proof follows by (3.4). The second half of part (3) is a consequence of the
observation that dim(k")=dim(h"*), and all computations are therefore sym-
metrical.

6. Width of the hook

Part (3) of the preceding theorem shows that given any integer m > ¢’, e.g.
m =[c’]+ 1, then there exists an integer k such that for all diagrams D = (k™)
or D = (m"), the identity I(R) contains I. Let x. (R) be the co-character of R,
i.e., the character of the representation module V,/I.(R), and let

6.1) x-(R)= z apXp where ap #0,

then the preceding result means that these diagrams D satisfy DZ (k™) and
DZ (m"*). In other words, we can state this fact:

CoROLLARY 9. The diagrams of D of the co-characters of (6.1) lie in a hook H
of the shape in Fig. 3, and the width of its legs is p = [c*] where ¢ =lim ¢, (R)"™.

Note that the size of the maximal square in H cannot be determined by our
method.

We quote an important result of Berele and Regev [2], stating that the
coefficients of the co-characters {ap} of (6.1) satisfy =ap = O(n*) for some
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-

Fig. 3.

integer s, i.e. Zap has polynomial growth. Hence it follows from (6.1) that
¢ (R)=Zap dim D and, therefore,

max dim D = ¢, (R)=maxdimD - D> ap = O(n")- maxdim D
which implies
62)  maxdimD" =c,(R)" Smaxdin D" (1+0('%8))

Since these diagrams lie within the hook H whose width is [¢?], it follows by
Theorem 6 that

dim D" =2[¢?]+ O ('25—") :

which proves one part of the following result:

CoroLLARY 10. If R has no right or left annihilator, then
¢ =lim ¢, (R)"" =lim ¢, (R)"" = 2[lim ¢, (R)"" J%;
and if R satisfies the Cappelli identity, then
lim ¢, (R)"" =[c?].

Indeed, the first part follows by passing to lim on both sides of (6.2). The
second part of the theorem follows from the fact that in this case H can be
replaced by a strip and then

dim D" =[c¢}]+ O (I—Of—"> :
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and the rest is as in the first part.

An upper bound for C = lim ¢, (R)"" can be given by Latyshef’s result to be
(d — 1), since ¢, (R)=(d — 1)’", where d is the minimal degree of the identities
of R. A lower bound for lim ¢, (R)"" can be obtain by a recent result of Regev
[5):

For the matrix ring R = M, (K), limc, (R)"" = r?, i.e., for these rings, there is
always a limit to ¢, (R)"". Using this result we can prove:

1/n

THEOREM 10. For a PI-algebra R let Ni(R) be the sum of nilpotent ideals of
R, then R/N,(R) can be embedded in some matrix ring M, (K), K commutative,
semi-prime, and ¢ =limc,(R)"" Z s°.

ProoF. Let R = R be the product ring, i.e., the ring of all functions from R
to R, and let L(R) be its lower radical. Consider the sequence of maps
¥ : R — R — R/L(R), where ¢ is the diagonal embedding of R into R follows
by the canonical projection. We prove Ker ¢ = Ni(R): indeed, if a € Ker ¢ then
for the function f € R, defined by f(r)=r for every r €R, we have that
af € L(R), where @ € R® is the image of a ER, i.e. a(r)=a for all r€R.
L(R) s nil and so af is nilpotent, i.e., there exists m such that (df)™ =0, hence
for all r €R, (af)™(r) = (ar)™ = 0. This yields that aR is a nil ideal of bounded
index, but R is an algebra of characteristic zero, hence by the Nagata—Higman
theorem it is nilpotent, which implies that a € Ni(R), i.e., Ker ¢y C Ni(R).

Conversely, if a € N,(R), then a generates a nilpotent ideal aR of index m,
then @R is also nilpotent, since

(afi- - afn)(r) = afi(r)afur) - - - afn (R) € (aR)™ = 0.

Thus a € Ker ¢, and so Ni(R)C Ker ¢.

Now R/L(R) is a semi-prime PI-ring, and as such it is embeddable in some
matrix ring M, (K), K commutative and semi-prime and which satisfies the same
identities. Hence ¢, (R/L(R)) = c. (M, (K))= s*". On the other hand, the iden-
tities of R and R are the same so that ¢,(R)=c.(R), and clearly c.(R)Z
. (R/L(R))=s"", so that lim ¢, (R)"" = s°. g.e.d.

This number s of Theorem 10 can also be characterised in a different way.

THEOREM 11. The integer s of Theorem 10 is the maximal order of matrix ring
M. (Q) which satisfies all identities of R, i.e., I(M,(Q))2 I(R).

PROOF. We can replace R by the universal ring F(x)/I(R), where F(x) is the
free ring in an infinite number of indeterminates, since the identities of R and of
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the universal ring coincide. For the universal ring we have N,(R)=
I(M, (Q))/I(R). Indeed, Ni(R) is the lower radical L(R) of R, since L(R)2
Ni(R) and if f(x) € L(R), then (f[x]x..1)” =0in R for some m and x,., which
is not in the indeterminates of f[x]. In other words this means that f[x]R is a nil
ideal of bounded index, and since the characteristic is zero, f[x] € Ni(R). Now,
for the universal ring L(R) is the identity of the matrix ring, i.e. L(R)=
I(M,(Q))/I(R), and ¢ is the maximal integer for which I(M,(Q)) = I(R). One
can now easily verify that t = s, the integer of Theorem 10.

CoroLLARY 12. If limc,(R)"" <4, then R/N\(R) is commutative, and if
R/N\(R) is not commutative, then limc,(R)"" = 4.

Indeed, the first part follows since s°<4 implies s =1. The second part
follows since then R/L(R) satisfies the same identities of a matrix ring M, (K),
t=2, and 5o ¢.(R)"" Z ¢, (R/L(R))"" — 1. Hence limc, (R)"" Z 1’z 4.

7. Limsup of the sequence {c.(R)""}

Let C = limc, (R)""; we determine a lower bound for the ultimate width of
the hook in which the diagrams D of the co-characters y, (R) of (6.1) lie in terms
of C if C>0. More precisely:

THEOREM 13. For any integer N, there exist diagrams D of the co-character
such that D contains either a hook T of width k and h, or a strip T = (a") or (k")
suchthat |T|> Nand h + k = C, and h = C for the case of a strip T (Fig. 4).

We need a few preliminary results.
Lemma 13'. Let D be a Young diagram of content n, divided into a union of

diagrams D,, |Di|=d;, i =0,1,2,---,r; then

dimDé(dd" d)dimDodimD,~--dimD,.
0,81, ", Gy

a

Fig. 4.
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The proof follows the same method as that of (4.9):

n! hy

di D——— 1 e 76 e, =+
1im llh,, d( d 1 { )h( JH ) hu

where Il is the product ranging over the subdiagram D,, with hook numbers

h’. Clearly h''= hy, so that the last factor is =1, which proves the lemma.
We are going to use this lemma in a special case where all D;, except D,, are

either rows or columns of length d; and width 1 (Fig. 5). In this case we show:

CoroLLARY 13". dim D = (n/(h + k))"(h + k)".

1 D,
_____._l D,
hf—————— - .c.
D, [ CT oo
b
k
'
[
_Ld
Fig. 5.

Indeed, by the preceding lemma we have, in our case, dim D; =1 for i > L.
Also dim D, = d,! since | Do| = do. Hence it follows by Lemma 13’ that

dimD = (dU d n : dh+k> dot = (du) do! <d1 Zvﬂ d‘) d )é nd“(h * k)"fdﬂ_

We turn to the proof of the theorem. By the statement preceding (6.2) it
follows that there exist constants K and s so that ¢, (R)< Kn’ dim D for some
diagram D which lies in the co-character x.(R). Next, the definition of C
implies that given ¢ >0 there exists an infinite sequence {n,} such that for
n€{n}, c.(R)>(C—¢/2)".

Using the last corollary we obtain

(7.1) (C—¢/2) = ¢, (R)= Kn'n'(h + k)"

The procedure of choosing the diagrams D is as follows:
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Given N and ¢ >0, find a sequence {n,} such that for all n €{n,}, c.(R)=
(C — €/2)". For each n € {n,} choose a diagram D such that ¢, (R)= Kn" dim D.
Now we consider two cases.

Case 1. These diagrams D have unbounded height and width. In this case
we choose integer a = b in Fig. 5, which will be chosen later depehding on N
and C, and R. To each D we cut the diagram at height and width a, and set D, to
be the remaining squares; then dy,=|D,|= a’. Next we choose n €{n,} large
enough such that

h+k>(C—-e2)(Kn*™)Y""zC~¢
which is possible for large n in the sequence {n,}, since by the lemma
(C—¢e2) =Kn**h + k) =Kn"**(h + k)"

If we choose ¢ >0 small enough so that C—¢ >[C] if C#[C], we get
h +k = Csince h + k is an integer; and if C isanintegerand C —¢ > C—1, we
also have h+k = C.

Finally, if T is the hook in D based on k and h we get

|T|=(k+h)a—kh=(k+h)a—p°

where p is an upper bound for the hook of shape H (Fig. 3) in which all these
diagrams D lie. Hence, if we choose a > (N +p®)/C we have |T|> N as
required.

Case 2. The chosen diagrams have either a bounded height or width (say of
bounded height). Then we choose b in Fig. 5 to be the maximum height. We
repeat the preceding procedure with k =0, and take the leg of D cut at distance
a (Fig. 5); then do=|D|= ab. Also, choose n large enough so that

h>(C—~¢/2)(Kn'n®)y"" = C—g¢,

hence, as before, h = C.
Finally, in this case we obtain the strip T of height h and length a, so that
|T|= ha > N if we choose a > N/C.

8. Appendix 1. An asymptotic formula

The lower bound of dim(k") given in section 1 is not far from the asymptotic
formula, which proves that we cannot expect that this computational method of
finding h, k, so that Si[x]=0 holds, will yield any result for h <1+ (d — 1),
although we know it holds for h =[d/2].
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THEOREM 14. dim[k"]= C(k + h)"*n*"*(e **h)*(1+ O(1/n)); x =k/h,
n =kh, where @(x) is the function in (2.4), and some constant C =
Co(1+ O(1/h)).

We use the Stirling formula
(8.1) > logv =n(logn —1)+ilogn + O(1).
v=1
Following the formulas of (2.2) we have
k h
Slog(s +1-1)=> > log(s +t—1)

t=1 s=1

k+h

——2(k+h—v)logv—2(k—v)logv—E(l—V)logV

=g(k+h)—g(k)—g(h)

where g(m)=27-, (¢ — v)log v. The last formula is obtained by setting s + ¢ —
1= v and summing in three areas, v < k (say k 2 h), k Zv > h,and v = h. We
then get

k+h~1 k h

Zﬂ (k+h —v)logu+v;“ hlogu+;=1 vlogv

k+h

k h
=Y (k+h—v)ogv+ 2 logv+ viogw
v=1 v=1

v=h+]

and the rest is immediate (when h = k the empty sum is taken to be zero).
Next we obtain an asymptotic formula for g(m). First, we need the well
known formula

mvzllogv =m[m(logm —1)+3logm + C + O(1/m))

=m’logm —m*+3imlogm + Cm + O(1).
Then

INgE

viegy =3 D [¥*—(v -1 +1]logv

{

ﬂ_
2

v=1

<

v logv— v “log(v +1)— Z log V}

[SIEN

nMi

M

v-l v-l
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Note that

1 1 .1 9
=Tt 0=6<1.

Hence

m 2 _ —
Y logv=-m—logm '”("2 1)+m41“é[logm+C+O(1/m)]+O(1)

+i{m(logm — 1) +logm + O(1)]

2 2
:an—logm —m7+%1+%m log m +logm + O(1)

where C is Euler’s constant. Hence
2
g(m)= E (m = v)log v ——-logm —im*—slogm + Am + O(1)
for some constant A.
Finally, by (8.1) for n = kh, x = k/h, we obtain that
logdim(k")=[n(logn — 1) +3logn + O(1)]
—[3(k + h)log(k + h)—3i(k + h)’ —%log(k + h)— A(k + h))
+[3k’log k —3k*—Hlogk + Ak])
+[3h’logh —3h*—Hlogh + Ah]+ O(1)

= nllogh — ¢(x)] +3logn +1log (kk;h) +0(1)

which proves that, for n = kh,
dim(k")= (e *“h)'n¥*(k + h)"*g(n, h).

If we use one additional term in the approximation of 2 log v and £ v log », we
can show that g(n, h) = C(1 + O(1/n)) for some constant C = C(h), which is of
the form Co(1+ O(1/h)).
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